BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 26368004)

  • 1. Computational Identification of Post Translational Modification Regulated RNA Binding Protein Motifs.
    Brown AS; Mohanty BK; Howe PH
    PLoS One; 2015; 10(9):e0137696. PubMed ID: 26368004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of RBP Regulation and Co-regulation of mRNA 3' UTR Regions in a Luciferase Reporter System.
    Sternburg EL; Karginov FV
    Methods Mol Biol; 2021; 2170():101-115. PubMed ID: 32797453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functionally related transcripts have common RNA motifs for specific RNA-binding proteins in trypanosomes.
    NoƩ G; De Gaudenzi JG; Frasch AC
    BMC Mol Biol; 2008 Dec; 9():107. PubMed ID: 19063746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of turnover and translation regulatory RNA-binding protein expression through binding to cognate mRNAs.
    Pullmann R; Kim HH; Abdelmohsen K; Lal A; Martindale JL; Yang X; Gorospe M
    Mol Cell Biol; 2007 Sep; 27(18):6265-78. PubMed ID: 17620417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human protein-RNA interaction network is highly stable across mammals.
    Ramakrishnan A; Janga SC
    BMC Genomics; 2019 Dec; 20(Suppl 12):1004. PubMed ID: 31888461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 43-nucleotide U-rich element in 3'-untranslated region of large number of Trypanosoma cruzi transcripts is important for mRNA abundance in intracellular amastigotes.
    Li ZH; De Gaudenzi JG; Alvarez VE; Mendiondo N; Wang H; Kissinger JC; Frasch AC; Docampo R
    J Biol Chem; 2012 Jun; 287(23):19058-69. PubMed ID: 22500021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Known turnover and translation regulatory RNA-binding proteins interact with the 3' UTR of SECIS-binding protein 2.
    Bubenik JL; Ladd AN; Gerber CA; Budiman ME; Driscoll DM
    RNA Biol; 2009; 6(1):73-83. PubMed ID: 19106619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins from high-throughput CLIP-seq data.
    Li S; Dong F; Wu Y; Zhang S; Zhang C; Liu X; Jiang T; Zeng J
    Nucleic Acids Res; 2017 Aug; 45(14):e129. PubMed ID: 28575488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting in vivo binding sites of RNA-binding proteins using mRNA secondary structure.
    Li X; Quon G; Lipshitz HD; Morris Q
    RNA; 2010 Jun; 16(6):1096-107. PubMed ID: 20418358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic antibodies as tools to probe RNA-binding protein function.
    Laver JD; Ancevicius K; Sollazzo P; Westwood JT; Sidhu SS; Lipshitz HD; Smibert CA
    Mol Biosyst; 2012 Jun; 8(6):1650-7. PubMed ID: 22481296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the nucleocytoplasmic shuttling RNA-binding protein HNRNPU using optimized HITS-CLIP method.
    Yugami M; Okano H; Nakanishi A; Yano M
    PLoS One; 2020; 15(4):e0231450. PubMed ID: 32302342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive Identification of RNA-Binding Domains in Human Cells.
    Castello A; Fischer B; Frese CK; Horos R; Alleaume AM; Foehr S; Curk T; Krijgsveld J; Hentze MW
    Mol Cell; 2016 Aug; 63(4):696-710. PubMed ID: 27453046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The 3' untranslated region of manganese superoxide dismutase RNA contains a translational enhancer element.
    Chung DJ; Wright AE; Clerch LB
    Biochemistry; 1998 Nov; 37(46):16298-306. PubMed ID: 9819222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA-binding protein-mediated post-transcriptional controls of gene expression: integration of molecular mechanisms at the 3' end of mRNAs?
    Vindry C; Vo Ngoc L; Kruys V; Gueydan C
    Biochem Pharmacol; 2014 Jun; 89(4):431-40. PubMed ID: 24735612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RBPmap: A Tool for Mapping and Predicting the Binding Sites of RNA-Binding Proteins Considering the Motif Environment.
    Paz I; Argoetti A; Cohen N; Even N; Mandel-Gutfreund Y
    Methods Mol Biol; 2022; 2404():53-65. PubMed ID: 34694603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome-wide analysis reveals spatial correlation between N6-methyladenosine and binding sites of microRNAs and RNA-binding proteins.
    Das Mandal S; Ray PS
    Genomics; 2021 Jan; 113(1 Pt 1):205-216. PubMed ID: 33340693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PTRE-seq reveals mechanism and interactions of RNA binding proteins and miRNAs.
    Cottrell KA; Chaudhari HG; Cohen BA; Djuranovic S
    Nat Commun; 2018 Jan; 9(1):301. PubMed ID: 29352242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly accessible AU-rich regions in 3' untranslated regions are hotspots for binding of regulatory factors.
    Plass M; Rasmussen SH; Krogh A
    PLoS Comput Biol; 2017 Apr; 13(4):e1005460. PubMed ID: 28410363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Matrix-screening reveals a vast potential for direct protein-protein interactions among RNA binding proteins.
    Lang B; Yang JS; Garriga-Canut M; Speroni S; Aschern M; Gili M; Hoffmann T; Tartaglia GG; Maurer SP
    Nucleic Acids Res; 2021 Jul; 49(12):6702-6721. PubMed ID: 34133714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system.
    Hogan DJ; Riordan DP; Gerber AP; Herschlag D; Brown PO
    PLoS Biol; 2008 Oct; 6(10):e255. PubMed ID: 18959479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.