These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
455 related articles for article (PubMed ID: 26368131)
1. Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors. Fantozzi S; Giovanardi A; Borra D; Gatta G PLoS One; 2015; 10(9):e0138105. PubMed ID: 26368131 [TBL] [Abstract][Full Text] [Related]
2. Effect of walking speed during gait in water of healthy elderly. Fantozzi S; Cortesi M; Giovanardi A; Borra D; Di Michele R; Gatta G Gait Posture; 2020 Oct; 82():6-13. PubMed ID: 32836027 [TBL] [Abstract][Full Text] [Related]
3. A Wearable Magneto-Inertial System for Gait Analysis (H-Gait): Validation on Normal Weight and Overweight/Obese Young Healthy Adults. Agostini V; Gastaldi L; Rosso V; Knaflitz M; Tadano S Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29065485 [No Abstract] [Full Text] [Related]
4. Contributions to the understanding of gait control. Simonsen EB Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597 [TBL] [Abstract][Full Text] [Related]
5. Influence of BMI on Gait Characteristics of Young Adults: 3D Evaluation Using Inertial Sensors. Rosso V; Agostini V; Takeda R; Tadano S; Gastaldi L Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569372 [TBL] [Abstract][Full Text] [Related]
6. Validation of wearable inertial sensor-based gait analysis system for measurement of spatiotemporal parameters and lower extremity joint kinematics in sagittal plane. Patel G; Mullerpatan R; Agarwal B; Shetty T; Ojha R; Shaikh-Mohammed J; Sujatha S Proc Inst Mech Eng H; 2022 May; 236(5):686-696. PubMed ID: 35001713 [TBL] [Abstract][Full Text] [Related]
7. Experimental evaluation of indoor magnetic distortion effects on gait analysis performed with wearable inertial sensors. Palermo E; Rossi S; Patanè F; Cappa P Physiol Meas; 2014 Mar; 35(3):399-415. PubMed ID: 24499774 [TBL] [Abstract][Full Text] [Related]
8. Side to side kinematic gait differences within patients and spatiotemporal and kinematic gait differences between patients with severe knee osteoarthritis and controls measured with inertial sensors. Ismailidis P; Hegglin L; Egloff C; Pagenstert G; Kernen R; Eckardt A; Ilchmann T; Nüesch C; Mündermann A Gait Posture; 2021 Feb; 84():24-30. PubMed ID: 33260078 [TBL] [Abstract][Full Text] [Related]
9. Improving the reliability of underwater gait analysis using wearable pressure and inertial sensors. Monoli C; Galli M; Tuhtan JA PLoS One; 2024; 19(3):e0300100. PubMed ID: 38512810 [TBL] [Abstract][Full Text] [Related]
10. Pelvic and lower limb compensatory actions of subjects in an early stage of hip osteoarthritis. Watelain E; Dujardin F; Babier F; Dubois D; Allard P Arch Phys Med Rehabil; 2001 Dec; 82(12):1705-11. PubMed ID: 11733886 [TBL] [Abstract][Full Text] [Related]
11. Lower limb joint angles and their variability during uphill walking. Sarvestan J; Ataabadi PA; Yazdanbakhsh F; Abbasi S; Abbasi A; Svoboda Z Gait Posture; 2021 Oct; 90():434-440. PubMed ID: 34597985 [TBL] [Abstract][Full Text] [Related]
12. A Nonproprietary Movement Analysis System (MoJoXlab) Based on Wearable Inertial Measurement Units Applicable to Healthy Participants and Those With Anterior Cruciate Ligament Reconstruction Across a Range of Complex Tasks: Validation Study. Islam R; Bennasar M; Nicholas K; Button K; Holland S; Mulholland P; Price B; Al-Amri M JMIR Mhealth Uhealth; 2020 Jun; 8(6):e17872. PubMed ID: 32543446 [TBL] [Abstract][Full Text] [Related]
13. Test-Retest Reliability of Kinematic and Temporal Outcome Measures for Clinical Gait and Stair Walking Tests, Based on Wearable Inertial Sensors. Nilsson S; Ertzgaard P; Lundgren M; Grip H Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161916 [TBL] [Abstract][Full Text] [Related]
14. Effect of trunk sagittal attitude on shoulder, thorax and pelvis three-dimensional kinematics in able-bodied subjects during gait. Leardini A; Berti L; Begon M; Allard P PLoS One; 2013; 8(10):e77168. PubMed ID: 24204763 [TBL] [Abstract][Full Text] [Related]
15. Consistent accuracy in whole-body joint kinetics during gait using wearable inertial motion sensors and in-shoe pressure sensors. Khurelbaatar T; Kim K; Lee S; Kim YH Gait Posture; 2015 Jun; 42(1):65-9. PubMed ID: 25957652 [TBL] [Abstract][Full Text] [Related]
17. Gait kinematic analysis in patients with a mild form of central cord syndrome. Gil-Agudo A; Pérez-Nombela S; Forner-Cordero A; Pérez-Rizo E; Crespo-Ruiz B; del Ama-Espinosa A J Neuroeng Rehabil; 2011 Feb; 8():7. PubMed ID: 21288347 [TBL] [Abstract][Full Text] [Related]
18. Measuring gait kinematics in patients with severe hip osteoarthritis using wearable sensors. Ismailidis P; Nüesch C; Kaufmann M; Clauss M; Pagenstert G; Eckardt A; Ilchmann T; Mündermann A Gait Posture; 2020 Sep; 81():49-55. PubMed ID: 32679463 [TBL] [Abstract][Full Text] [Related]
19. Effects of camera viewing angles on tracking kinematic gait patterns using Azure Kinect, Kinect v2 and Orbbec Astra Pro v2. Yeung LF; Yang Z; Cheng KC; Du D; Tong RK Gait Posture; 2021 Jun; 87():19-26. PubMed ID: 33878509 [TBL] [Abstract][Full Text] [Related]
20. Comparison in three dimensional gait kinematics between young and older adults on land and in shallow water. Abdul Jabbar K; Kudo S; Goh KW; Goh MR Gait Posture; 2017 Sep; 57():102-108. PubMed ID: 28599157 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]