BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26368171)

  • 1. Depth-based defocus map estimation using off-axis apertures.
    Lee E; Chae E; Cheong H; Jeon S; Paik J
    Opt Express; 2015 Aug; 23(17):21958-71. PubMed ID: 26368171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distance estimation using a single computational camera with dual off-axis color filtered apertures.
    Lee S; Hayes MH; Paik J
    Opt Express; 2013 Oct; 21(20):23116-29. PubMed ID: 24104227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifocusing and depth estimation using a color shift model-based computational camera.
    Kim S; Lee E; Hayes MH; Paik J
    IEEE Trans Image Process; 2012 Sep; 21(9):4152-66. PubMed ID: 22695352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defocus Map Estimation From a Single Image Based on Two-Parameter Defocus Model.
    Shaojun Liu ; Fei Zhou ; Qingmin Liao
    IEEE Trans Image Process; 2016 Dec; 25(12):5943-5956. PubMed ID: 28113397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defocus map estimation from a single image via spectrum contrast.
    Tang C; Hou C; Song Z
    Opt Lett; 2013 May; 38(10):1706-8. PubMed ID: 23938918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defocus Image Deblurring Network With Defocus Map Estimation as Auxiliary Task.
    Ma H; Liu S; Liao Q; Zhang J; Xue JH
    IEEE Trans Image Process; 2022; 31():216-226. PubMed ID: 34793301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Handling noise in single image defocus map estimation by using directional filters.
    Yu X; Zhao X; Sui Y; Zhang L
    Opt Lett; 2014 Nov; 39(21):6281-4. PubMed ID: 25361334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatially varying defocus map estimation from a single image based on spatial aliasing sampling method.
    Yang P; Liu M; Dong L; Kong L; Zhao Y; Hui M
    Opt Express; 2024 Mar; 32(6):8959-8973. PubMed ID: 38571141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional object motion and velocity estimation using a single computational RGB-D camera.
    Lee S; Jeong K; Park J; Paik J
    Sensors (Basel); 2015 Jan; 15(1):995-1007. PubMed ID: 25580899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active depth estimation from defocus using a camera array.
    Tao T; Chen Q; Feng S; Hu Y; Zuo C
    Appl Opt; 2018 Jun; 57(18):4960-4967. PubMed ID: 30117952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noise-Resilient Depth Estimation for Light Field Images Using Focal Stack and FFT Analysis.
    Sharma R; Perry S; Cheng E
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape Estimation from Shading, Defocus, and Correspondence Using Light-Field Angular Coherence.
    Tao MW; Srinivasan PP; Hadap S; Rusinkiewicz S; Malik J; Ramamoorthi R
    IEEE Trans Pattern Anal Mach Intell; 2017 Mar; 39(3):546-560. PubMed ID: 27101598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Passive depth estimation using chromatic aberration and a depth from defocus approach.
    Trouvé P; Champagnat F; Le Besnerais G; Sabater J; Avignon T; Idier J
    Appl Opt; 2013 Oct; 52(29):7152-64. PubMed ID: 24217733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Edge-Based Defocus Blur Estimation With Adaptive Scale Selection.
    Karaali A; Jung CR
    IEEE Trans Image Process; 2018 Mar; 27(3):1126-1137. PubMed ID: 29220316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual focus and depth estimation from defocused video sequences.
    Yang J; Schonfeld D
    IEEE Trans Image Process; 2010 Mar; 19(3):668-79. PubMed ID: 19933002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absolute depth estimation from a single defocused image.
    Lin J; Ji X; Xu W; Dai Q
    IEEE Trans Image Process; 2013 Nov; 22(11):4545-50. PubMed ID: 23893725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Multi-Scale Feature Learning for Defocus Blur Estimation.
    Karaali A; Harte N; Jung CR
    IEEE Trans Image Process; 2022; 31():1097-1106. PubMed ID: 34990362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-Parametric Blur Map Regression for Depth of Field Extension.
    D'Andres L; Salvador J; Kochale A; Susstrunk S
    IEEE Trans Image Process; 2016 Apr; 25(4):1660-73. PubMed ID: 26886992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maximum Likelihood Estimation of Depth Maps Using Photometric Stereo.
    Harrison AP; Joseph D
    IEEE Trans Pattern Anal Mach Intell; 2012 Jul; 34(7):1368-80. PubMed ID: 22184255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust Light Field Depth Estimation Using Occlusion-Noise Aware Data Costs.
    Williem ; Park IK; Lee KM
    IEEE Trans Pattern Anal Mach Intell; 2018 Oct; 40(10):2484-2497. PubMed ID: 28866482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.