These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 26368200)

  • 1. Probe-controlled soliton frequency shift in the regime of optical event horizon.
    Gu J; Guo H; Wang S; Zeng X
    Opt Express; 2015 Aug; 23(17):22285-90. PubMed ID: 26368200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mid-IR femtosecond frequency conversion by soliton-probe collision in phase-mismatched quadratic nonlinear crystals.
    Liu X; Zhou B; Guo H; Bache M
    Opt Lett; 2015 Aug; 40(16):3798-801. PubMed ID: 26274663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wavelength-tunable few-cycle pulses in visible region generated through soliton-plasma interactions.
    Huang Z; Wang D; Chen Y; Zhao R; Zhao Y; Nam S; Lim C; Peng Y; Du J; Leng Y
    Opt Express; 2018 Dec; 26(26):34977-34993. PubMed ID: 30650913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of finite energy Airy pulses and soliton generation in optical fibers with cubic-quintic nonlinearity.
    Zhong X; Du X; Cheng K
    Opt Express; 2015 Nov; 23(23):29467-75. PubMed ID: 26698430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dispersive waves induced by self-defocusing temporal solitons in a beta-barium-borate crystal.
    Zhou B; Bache M
    Opt Lett; 2015 Sep; 40(18):4257-60. PubMed ID: 26371910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulse trapping by ultrashort soliton pulses in optical fibers across zero-dispersion wavelength.
    Nishizawa N; Goto T
    Opt Lett; 2002 Feb; 27(3):152-4. PubMed ID: 18007739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multioctave, 3-18  μm sub-two-cycle supercontinua from self-compressing, self-focusing soliton transients in a solid.
    Lanin AA; Voronin AA; Stepanov EA; Fedotov AB; Zheltikov AM
    Opt Lett; 2015 Mar; 40(6):974-7. PubMed ID: 25768160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear-optical spectral transformation of few-cycle laser pulses in photonic-crystal fibers.
    Serebryannikov EE; Zheltikov AM; Ishii N; Teisset CY; Köhler S; Fuji T; Metzger T; Krausz F; Baltuska A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056603. PubMed ID: 16383767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soliton trapping of dispersive waves in photonic crystal fiber with two zero dispersive wavelengths.
    Wang W; Yang H; Tang P; Zhao C; Gao J
    Opt Express; 2013 May; 21(9):11215-26. PubMed ID: 23669979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength.
    Frosz M; Falk P; Bang O
    Opt Express; 2005 Aug; 13(16):6181-92. PubMed ID: 19498630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energetic mid-IR femtosecond pulse generation by self-defocusing soliton-induced dispersive waves in a bulk quadratic nonlinear crystal.
    Zhou B; Guo H; Bache M
    Opt Express; 2015 Mar; 23(5):6924-36. PubMed ID: 25836912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation.
    Abeeluck AK; Headley C
    Opt Lett; 2005 Jan; 30(1):61-3. PubMed ID: 15648638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulating Airy pulse in the regime of optical event horizon.
    Yang A; He Y; Wang S; Zeng X
    Opt Express; 2018 Dec; 26(26):34689-34698. PubMed ID: 30650889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulse compression and multimegawatt optical solitons in hollow photonic-crystal fibers.
    Bessonov AD; Zheltikov AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066618. PubMed ID: 16907008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical event horizon-based complete transformation and control of dark solitons.
    Deng Z; Chen Y; Liu J; Zhao C; Fan D
    Opt Lett; 2018 Nov; 43(21):5327-5330. PubMed ID: 30382998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymptotically stable compensation of the soliton self-frequency shift.
    Pickartz S; Bandelow U; Amiranashvili S
    Opt Lett; 2017 Apr; 42(7):1416-1419. PubMed ID: 28362783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffraction-arrested soliton self-frequency shift of few-cycle laser pulses in a photonic-crystal fiber.
    Serebryannikov EE; Zheltikov AM; Köhler S; Ishii N; Teisset CY; Fuji T; Krausz F; Baltuska A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066617. PubMed ID: 16907007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soliton compression to few-cycle pulses with a high quality factor by engineering cascaded quadratic nonlinearities.
    Zeng X; Guo H; Zhou B; Bache M
    Opt Express; 2012 Nov; 20(24):27071-82. PubMed ID: 23187563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled generation of soliton spectral tunneling by double pulses injection.
    Yang Y; Yang H; Luo E; Yin X; Rong J
    Opt Express; 2022 Dec; 30(25):45082-45092. PubMed ID: 36522918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of the stepwise blue shift of a dispersive wave preceding its trapping by a soliton.
    Bendahmane A; Mussot A; Conforti M; Kudlinski A
    Opt Express; 2015 Jun; 23(13):16595-601. PubMed ID: 26191672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.