These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 26368218)

  • 1. Dynamic control of optical transmission through a nano-slit using surface plasmons.
    Daniel S; Saastamoinen K; Saastamoinen T; Rahomäki J; Friberg AT; Visser TD
    Opt Express; 2015 Aug; 23(17):22512-9. PubMed ID: 26368218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon switching: observation of dynamic surface plasmon steering by selective mode excitation in a sub-wavelength slit.
    Raghunathan SB; Gan CH; van Dijk T; Ea Kim B; Schouten HF; Ubachs W; Lalanne P; Visser TD
    Opt Express; 2012 Jul; 20(14):15326-35. PubMed ID: 22772229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmission of light through a periodic array of slits in a thick metallic film.
    Xie Y; Zakharian A; Moloney J; Mansuripur M
    Opt Express; 2005 Jun; 13(12):4485-91. PubMed ID: 19495363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical study of transmission characteristics of sub-wavelength nano-structured metallic grating.
    Liang Y; Peng W
    Appl Spectrosc; 2013 Jan; 67(1):49-53. PubMed ID: 23317670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Switchable beaming from a nanoslit with metallic gratings controlled by the phase difference between incident beams.
    Kim K; Lee SY; Yun H; Park JB; Lee B
    Opt Express; 2014 Mar; 22(5):5465-73. PubMed ID: 24663887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wavelength tunable surface plasmon resonance-enhanced optical transmission through a chirped diffraction grating.
    Yeh WH; Kleingartner J; Hillier AC
    Anal Chem; 2010 Jun; 82(12):4988-93. PubMed ID: 20481520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of Rayleigh-Wood Anomalies and Surface Plasmons in Optical Enhancement for Nano-Gratings.
    Darweesh AA; Bauman SJ; Debu DT; Herzog JB
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30304809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of radiation and surface plasmon polaritons in the optical interactions between a nano-slit and a nano-groove on a metal surface.
    Chen L; Robinson JT; Lipson M
    Opt Express; 2006 Dec; 14(26):12629-36. PubMed ID: 19532154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-optical ultrafast control of beaming through a single sub-wavelength aperture in a metal film.
    Swillam MA; Rotenberg N; van Driel HM
    Opt Express; 2011 Apr; 19(8):7856-64. PubMed ID: 21503097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extraordinary optical transmission based on subwavelength metallic grating with ellipse walls.
    Liang Y; Peng W; Hu R; Zou H
    Opt Express; 2013 Mar; 21(5):6139-52. PubMed ID: 23482182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon-assisted two-slit transmission: Young's experiment revisited.
    Schouten HF; Kuzmin N; Dubois G; Visser TD; Gbur G; Alkemade PF; Blok H; Hooft GW; Lenstra D; Eliel ER
    Phys Rev Lett; 2005 Feb; 94(5):053901. PubMed ID: 15783641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffraction-based tracking of surface plasmon resonance enhanced transmission through a gold-coated grating.
    Yeh WH; Petefish JW; Hillier AC
    Anal Chem; 2011 Aug; 83(15):6047-53. PubMed ID: 21688830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualization of surface plasmon interference by imprinting intensity patterns on a photosensitive polymer.
    König T; Santer S
    Nanotechnology; 2012 Dec; 23(48):485304. PubMed ID: 23124330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging slit-coupled surface plasmon polaritons using conventional optical microscopy.
    Mehfuz R; Chowdhury FA; Chau KJ
    Opt Express; 2012 May; 20(10):10526-37. PubMed ID: 22565678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dynamic plasmonic manipulation technique assisted by phase modulation of an incident optical vortex beam.
    Yuan GH; Wang Q; Tan PS; Lin J; Yuan XC
    Nanotechnology; 2012 Sep; 23(38):385204. PubMed ID: 22948098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the phase of plasmons excited by slits in a metal film.
    Janssen OT; Urbach HP; 't Hooft GW
    Opt Express; 2006 Nov; 14(24):11823-32. PubMed ID: 19529605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bouncing surface plasmons.
    Kuzmin NV; Alkemade PF; 't Hooft GW; Eliel ER
    Opt Express; 2007 Oct; 15(21):13757-67. PubMed ID: 19550646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarization-induced tunability of localized surface plasmon resonances in arrays of sub-wavelength cruciform apertures.
    Thompson PG; Biris CG; Osley EJ; Gaathon O; Osgood RM; Panoiu NC; Warburton PA
    Opt Express; 2011 Dec; 19(25):25035-47. PubMed ID: 22273895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. VO(2) based waveguide-mode plasmonic nano-gratings for optical switching.
    Sharma Y; Tiruveedhula VA; Muth JF; Dhawan A
    Opt Express; 2015 Mar; 23(5):5822-49. PubMed ID: 25836811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitive label-free biosensors by using gap plasmons in gold nanoslits.
    Lee KL; Wang WS; Wei PK
    Biosens Bioelectron; 2008 Oct; 24(2):210-5. PubMed ID: 18499430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.