These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26368428)

  • 1. Ultra-wideband surface plasmonic Y-splitter.
    Gao X; Zhou L; Yu XY; Cao WP; Li HO; Ma HF; Cui TJ
    Opt Express; 2015 Sep; 23(18):23270-7. PubMed ID: 26368428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures.
    Liu X; Feng Y; Chen K; Zhu B; Zhao J; Jiang T
    Opt Express; 2014 Aug; 22(17):20107-16. PubMed ID: 25321220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spoof Surface Plasmon Polaritons Power Divider with large Isolation.
    Zhou S; Lin JY; Wong SW; Deng F; Zhu L; Yang Y; He Y; Tu ZH
    Sci Rep; 2018 Apr; 8(1):5947. PubMed ID: 29654254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Planar spoof plasmonic ultra-wideband filter based on low-loss and compact terahertz waveguide corrugated with dumbbell grooves.
    Zhou YJ; Yang BJ
    Appl Opt; 2015 May; 54(14):4529-33. PubMed ID: 25967512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spoof plasmonic waveguide developed from coplanar stripline for strongly confined terahertz propagation and its application in microwave filters.
    Guo YJ; Da Xu K; Tang X
    Opt Express; 2018 Apr; 26(8):10589-10598. PubMed ID: 29715993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Splitting spoof surface plasmon polaritons to different directions with high efficiency in ultra-wideband frequencies.
    Wang J; Zhao L; Hao ZC; Shen X; Cui TJ
    Opt Lett; 2019 Jul; 44(13):3374-3377. PubMed ID: 31259964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-efficiency surface plasmonic polariton waveguides with enhanced low-frequency performance in microwave frequencies.
    Zhang D; Zhang K; Wu Q; Ding X; Sha X
    Opt Express; 2017 Feb; 25(3):2121-2129. PubMed ID: 29519060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel non-periodic spoof surface plasmon polaritons with H-shaped cells and its application to high selectivity wideband bandpass filter.
    Gao X; Che W; Feng W
    Sci Rep; 2018 Feb; 8(1):2456. PubMed ID: 29410420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strongly Confined Spoof Surface Plasmon Polaritons Waveguiding Enabled by Planar Staggered Plasmonic Waveguides.
    Ye L; Xiao Y; Liu Y; Zhang L; Cai G; Liu QH
    Sci Rep; 2016 Dec; 6():38528. PubMed ID: 27917930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-wideband filtering of spoof surface plasmon polaritons using deep subwavelength planar structures.
    Hu MZ; Zhang HC; Yin JY; Ding Z; Liu JF; Tang WX; Cui TJ
    Sci Rep; 2016 Nov; 6():37605. PubMed ID: 27883028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Hybrid Circuit for Spoof Surface Plasmons and Spatial Waveguide Modes to Reach Controllable Band-Pass Filters.
    Zhang Q; Zhang HC; Wu H; Cui TJ
    Sci Rep; 2015 Nov; 5():16531. PubMed ID: 26552584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of mechanism: spoof SPPs on periodically textured metal surface with pyramidal grooves.
    Tian L; Liu J; Zhou K; Gao Y; Liu S
    Sci Rep; 2016 Aug; 6():32008. PubMed ID: 27557872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Terahertz broadband spoof surface plasmon polaritons using high-order mode developed from ultra-compact split-ring grooves.
    Xu KD; Guo YJ; Deng X
    Opt Express; 2019 Feb; 27(4):4354-4363. PubMed ID: 30876052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broadband high-order mode of spoof surface plasmon polaritons supported by compact complementary structure with high efficiency.
    Zhang D; Zhang K; Wu Q; Dai R; Sha X
    Opt Lett; 2018 Jul; 43(13):3176-3179. PubMed ID: 29957810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coplanar waveguide wideband band-stop filter based on localized spoof surface plasmons.
    Li Z; Xu J; Chen C; Sun Y; Xu B; Liu L; Gu C
    Appl Opt; 2016 Dec; 55(36):10323-10328. PubMed ID: 28059253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable band-notched coplanar waveguide based on localized spoof surface plasmons.
    Xu B; Li Z; Liu L; Xu J; Chen C; Ning P; Chen X; Gu C
    Opt Lett; 2015 Oct; 40(20):4683-6. PubMed ID: 26469594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. k-dispersion engineering of spoof surface plasmon polaritons for beam steering.
    Li Y; Zhang J; Qu S; Wang J; Feng M; Wang J; Xu Z
    Opt Express; 2016 Jan; 24(2):842-52. PubMed ID: 26832467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic waveguide with folded stubs for highly confined terahertz propagation and concentration.
    Ye L; Xiao Y; Liu N; Song Z; Zhang W; Liu QH
    Opt Express; 2017 Jan; 25(2):898-906. PubMed ID: 28157978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Backward spoof surface wave in plasmonic metamaterial of ultrathin metallic structure.
    Liu X; Feng Y; Zhu B; Zhao J; Jiang T
    Sci Rep; 2016 Feb; 6():20448. PubMed ID: 26842340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compact Feeding Network for Array Radiations of Spoof Surface Plasmon Polaritons.
    Xu JJ; Yin JY; Zhang HC; Cui TJ
    Sci Rep; 2016 Mar; 6():22692. PubMed ID: 26948142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.