These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 26368475)

  • 1. Discerning electromagnetically induced transparency from Autler-Townes splitting in plasmonic waveguide and coupled resonators system.
    He LY; Wang TJ; Gao YP; Cao C; Wang C
    Opt Express; 2015 Sep; 23(18):23817-26. PubMed ID: 26368475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Objectively discerning Autler-Townes splitting from electromagnetically induced transparency.
    Anisimov PM; Dowling JP; Sanders BC
    Phys Rev Lett; 2011 Oct; 107(16):163604. PubMed ID: 22107383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities.
    Peng B; Ă–zdemir SK; Chen W; Nori F; Yang L
    Nat Commun; 2014 Oct; 5():5082. PubMed ID: 25342088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dressed-state realization of the transition from electromagnetically induced transparency to Autler-Townes splitting in superconducting circuits.
    Li HC; Ge GQ; Zhang HY
    Opt Express; 2015 Apr; 23(8):9844-51. PubMed ID: 25969025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analogue of electromagnetically induced transparency in integrated plasmonics with radiative and subradiant resonators.
    Wang T; Zhang Y; Hong Z; Han Z
    Opt Express; 2014 Sep; 22(18):21529-34. PubMed ID: 25321531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental distinction of Autler-Townes splitting from electromagnetically induced transparency using coupled mechanical oscillators system.
    Liu J; Yang H; Wang C; Xu K; Xiao J
    Sci Rep; 2016 Jan; 6():19040. PubMed ID: 26751738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinction of electromagnetically induced transparency and Autler-Towners splitting in a Rydberg-involved ladder-type cold atom system.
    Ji Z; Jiao Y; Xue Y; Hao L; Zhao J; Jia S
    Opt Express; 2021 Apr; 29(8):11406-11415. PubMed ID: 33984920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical bistability based on an analog of electromagnetically induced transparency in plasmonic waveguide-coupled resonators.
    Cui Y; Zeng C
    Appl Opt; 2012 Nov; 51(31):7482-6. PubMed ID: 23128694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-band unidirectional reflectionless phenomena in an ultracompact non-Hermitian plasmonic waveguide system based on near-field coupling.
    Zhang C; Bai R; Gu X; Jin XR; Zhang YQ; Lee Y
    Opt Express; 2017 Oct; 25(20):24281-24289. PubMed ID: 29041373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-imaginary spectrum decomposition of the transparency spectra in microwave dressed Rydberg systems.
    Niu W; Qin L; Shi Z; Zhang Y; Xia S; Feng X; Wang Q; Liu J; Zhao Z; Zhu Z; Li W; Zhao X
    Opt Express; 2024 Jun; 32(12):21374-21388. PubMed ID: 38859492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method proposing a slow light ring resonator structure coupled with a metal-dielectric-metal waveguide system based on plasmonic induced transparency.
    Keleshtery MH; Kaatuzian H; Mir A; Zandi A
    Appl Opt; 2017 May; 56(15):4496-4504. PubMed ID: 29047882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-based electromagnetically induced transparency with coupling Fabry-Perot resonators.
    Zhuang H; Kong F; Li K; Sheng S
    Appl Opt; 2015 Aug; 54(24):7455-61. PubMed ID: 26368785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-efficiency four-wave mixing beyond pure electromagnetically induced transparency treatment.
    Li HC; Ge GQ; Suhail Zubairy M
    Opt Lett; 2019 Jul; 44(14):3486-3489. PubMed ID: 31305554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase-coupled plasmon-induced transparency.
    Kekatpure RD; Barnard ES; Cai W; Brongersma ML
    Phys Rev Lett; 2010 Jun; 104(24):243902. PubMed ID: 20867303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers.
    Xia SX; Zhai X; Wang LL; Sun B; Liu JQ; Wen SC
    Opt Express; 2016 Aug; 24(16):17886-99. PubMed ID: 27505756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double plasmonic nanodisks design for electromagnetically induced transparency and slow light.
    Lai G; Liang R; Zhang Y; Bian Z; Yi L; Zhan G; Zhao R
    Opt Express; 2015 Mar; 23(5):6554-61. PubMed ID: 25836873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic-field-induced splitting of Rydberg Electromagnetically Induced Transparency and Autler-Townes spectra in
    Li X; Cui Y; Hao J; Zhou F; Wang Y; Jia F; Zhang J; Xie F; Zhong Z
    Opt Express; 2023 Nov; 31(23):38165-38178. PubMed ID: 38017929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices.
    Han Z; Bozhevolnyi SI
    Opt Express; 2011 Feb; 19(4):3251-7. PubMed ID: 21369147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vacuum induced transparency in metamaterials.
    Fan JW; Xu J; Cheng MT; Yang Y
    Opt Express; 2018 Jul; 26(15):19498-19512. PubMed ID: 30114121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmon-induced transparency in metal-insulator-metal waveguide side-coupled with multiple cavities.
    Guo J
    Appl Opt; 2014 Mar; 53(8):1604-9. PubMed ID: 24663417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.