These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 26368492)

  • 1. Elimination of image flicker in a fringe-field switching liquid crystal display by applying a bipolar voltage wave.
    Oh SW; Park JH; Lee JH; Yoon TH
    Opt Express; 2015 Sep; 23(18):24013-8. PubMed ID: 26368492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elimination of image flicker in fringe-field switching liquid crystal display driven with low frequency electric field.
    Kim JW; Choi TH; Yoon TH; Choi EJ; Lee JH
    Opt Express; 2014 Dec; 22(25):30586-91. PubMed ID: 25607006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field-symmetrization to solve luminance deviation between frames in a low-frequency-driven fringe-field switching liquid crystal cell.
    Kim MS; Bos PJ; Kim DW; Keum CM; Yang DK; Ham HG; Jeong KU; Lee JH; Lee SH
    Opt Express; 2016 Dec; 24(26):29568-29576. PubMed ID: 28059343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexoelectric in-plane switching (IPS) mode with ultra-high-transmittance, low-voltage, low-frequency, and a flicker-free image.
    Kim M; Ham HG; Choi HS; Bos PJ; Yang DK; Lee JH; Lee SH
    Opt Express; 2017 Mar; 25(6):5962-5971. PubMed ID: 28381066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Image flickering-free polymer stabilized fringe field switching liquid crystal display.
    Jiang Y; Qin G; Xu X; Zhou L; Lee S; Yang DK
    Opt Express; 2018 Dec; 26(25):32640-32651. PubMed ID: 30645427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexoelectric effect in an in-plane switching (IPS) liquid crystal cell for low-power consumption display devices.
    Kim MS; Bos PJ; Kim DW; Yang DK; Lee JH; Lee SH
    Sci Rep; 2016 Oct; 6():35254. PubMed ID: 27731372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient flickering behavior in fringe-field switching liquid crystal mode analyzed by positional asymmetric flexoelectric dynamics.
    Lee DJ; Shim GY; Choi JC; Park JS; Lee JH; Baek JH; Choi HC; Ha YM; Ranjkesh A; Kim HR
    Opt Express; 2015 Dec; 23(26):34055-70. PubMed ID: 26832062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast falling time of fringe-field-switching negative dielectric anisotropy liquid crystal achieved by inserting vertical walls.
    Kim H; Lee JH
    Appl Opt; 2015 Feb; 54(5):1046-50. PubMed ID: 25968020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electro-optical characteristics of an in-plane-switching liquid crystal cell with zero rubbing angle: dependence on the electrode structure.
    Choi TH; Choi Y; Woo JH; Oh SW; Yoon TH
    Opt Express; 2016 Jul; 24(14):15987-96. PubMed ID: 27410867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wide-view and sunlight readable transflective liquid-crystal display for mobile applications.
    Ge Z; Wu ST; Lee SH
    Opt Lett; 2008 Nov; 33(22):2623-5. PubMed ID: 19015688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly enhanced voltage holding property for low-frequency-driven fringe-field switching liquid crystal mode by charge-trapping effect of carbon-nanotube-doped surface.
    Choi JC; Lee DJ; Park MK; Park JS; Lee JH; Baek JH; Choi HC; Kim HR
    Opt Express; 2019 Sep; 27(20):29178-29195. PubMed ID: 31684656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viewing angle controllable liquid crystal display with high transmittance.
    Lim YJ; Kim JH; Her JH; Bhattacharyya SS; Park KH; Lee JH; Kim BK; Lee SH
    Opt Express; 2010 Mar; 18(7):6824-30. PubMed ID: 20389701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell gap polymer-stabilized fringe-field switching transflective liquid crystal display.
    Zhou X; Qin G; Yang DK
    Opt Lett; 2016 Jan; 41(2):257-60. PubMed ID: 26766688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transflective fringe-field switching liquid crystal display without any retarder.
    Her JH; Shin SJ; Lim YJ; Park KH; Lee JH; Kim BK; Lee GD; Lee SH
    Opt Express; 2010 Oct; 18(22):22842-9. PubMed ID: 21164623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Submillisecond-response liquid crystal for high-resolution virtual reality displays.
    Gou F; Chen H; Li MC; Lee SL; Wu ST
    Opt Express; 2017 Apr; 25(7):7984-7997. PubMed ID: 28380914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A vertical-field-driven polymer-stabilized blue phase liquid crystal mode to obtain a higher transmittance and lower driving voltage.
    Kim YH; Hur ST; Park CS; Park KW; Choi SW; Kang SW; Kim HR
    Opt Express; 2011 Aug; 19(18):17427-38. PubMed ID: 21935109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast switching, high contrast and high resolution liquid crystal device for virtual reality display.
    Yoon JH; Lee SJ; Lim YJ; Seo EJ; Shin HS; Myoung JM; Lee SH
    Opt Express; 2018 Dec; 26(26):34142-34149. PubMed ID: 30650842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal character of the Bobylev-Pikin flexoelectric instability in a twisted nematic bent-core liquid crystal exposed to very low frequency fields.
    Krishnamurthy KS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052508. PubMed ID: 25353816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast bistable switching of a cholesteric liquid crystal device induced by application of an in-plane electric field.
    Oh SW; Yoon TH
    Appl Opt; 2014 Nov; 53(31):7321-4. PubMed ID: 25402894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast fringe-field switching of a liquid crystal cell by two-dimensional confinement with virtual walls.
    Choi TH; Oh SW; Park YJ; Choi Y; Yoon TH
    Sci Rep; 2016 Jun; 6():27936. PubMed ID: 27301651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.