These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 263685)

  • 1. The behavior of oxonol dyes in phospholipid dispersions.
    Bashford CL; Chance B; Smith JC; Yoshida T
    Biophys J; 1979 Jan; 25(1):63-85. PubMed ID: 263685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impermeant potential-sensitive oxonol dyes: I. Evidence for an "on-off" mechanism.
    George EB; Nyirjesy P; Basson M; Ernst LA; Pratap PR; Freedman JC; Waggoner AS
    J Membr Biol; 1988 Aug; 103(3):245-53. PubMed ID: 3184175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of the potential-sensitive extrinsic probe oxonol VI in beef heart submitochondrial particles.
    Smith JC; Chance B
    J Membr Biol; 1979; 46(3):255-82. PubMed ID: 233819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxonol dyes as monitors of membrane potential. Their behavior in photosynthetic bacteria.
    Bashford CL; Chance B; Prince RC
    Biochim Biophys Acta; 1979 Jan; 545(1):46-57. PubMed ID: 103582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A stopped-flow kinetic study of the interaction of potential-sensitive oxonol dyes with lipid vesicles.
    Clarke RJ; Apell HJ
    Biophys Chem; 1989 Nov; 34(3):225-37. PubMed ID: 2611347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The behavior of the fluorescence lifetime and polarization of oxonol potential-sensitive extrinsic probes in solution and in beef heart submitochondrial particles.
    Smith JC; Hallidy L; Topp MR
    J Membr Biol; 1981; 60(3):173-85. PubMed ID: 7253009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interaction of potential-sensitive molecular probes with dimyristoylphosphatidylcholine vesicles investigated by 31P-NMR and electron microscopy.
    Bammel BP; Brand JA; Simmons RB; Evans D; Smith JC
    Biochim Biophys Acta; 1987 Jan; 896(2):136-52. PubMed ID: 3801465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impermeant potential-sensitive oxonol dyes: II. The dependence of the absorption signal on the length of alkyl substituents attached to the dye.
    Nyirjesy P; George EB; Gupta RK; Basson M; Pratap PR; Freedman JC; Raman K; Waggoner AS
    J Membr Biol; 1988 Oct; 105(1):45-53. PubMed ID: 3225835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impermeant potential-sensitive oxonol dyes: III. The dependence of the absorption signal on membrane potential.
    George EB; Nyirjesy P; Pratap PR; Freedman JC; Waggoner AS
    J Membr Biol; 1988 Oct; 105(1):55-64. PubMed ID: 3225836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxonol-V as a probe of chromaffin granule membrane potentials.
    Scherman D; Henry JP
    Biochim Biophys Acta; 1980 Jun; 599(1):150-66. PubMed ID: 7397145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxonol VI as an optical indicator for membrane potentials in lipid vesicles.
    Apell HJ; Bersch B
    Biochim Biophys Acta; 1987 Oct; 903(3):480-94. PubMed ID: 2444259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two mechanisms by which fluorescent oxonols indicate membrane potential in human red blood cells.
    Pratap PR; Novak TS; Freedman JC
    Biophys J; 1990 Apr; 57(4):835-49. PubMed ID: 1693090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane dynamics of the amphiphilic siderophore, acinetoferrin.
    Luo M; Fadeev EA; Groves JT
    J Am Chem Soc; 2005 Feb; 127(6):1726-36. PubMed ID: 15701007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of long-chain native fatty acids across lipid bilayer membranes indicates that transbilayer flip-flop is rate limiting.
    Kleinfeld AM; Chu P; Romero C
    Biochemistry; 1997 Nov; 36(46):14146-58. PubMed ID: 9369487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of a fluorescent dansylcadaverine-substance P analogue to negatively charged phospholipid membranes.
    Gómez CM; Codoñer A; Campos A; Abad C
    Int J Biol Macromol; 2000 Jul; 27(4):291-9. PubMed ID: 10921856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Merocyanine 540, a fluorescent probe sensitive to lipid packing.
    Williamson P; Mattocks K; Schlegel RA
    Biochim Biophys Acta; 1983 Jul; 732(2):387-93. PubMed ID: 6871207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of membrane potential deltapsi in reconstituted plasma membrane vesicles using a numerical model of oxonol VI distribution.
    Portele A; Lenz J; Höfer M
    J Bioenerg Biomembr; 1997 Dec; 29(6):603-9. PubMed ID: 9559861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of cholesterol and phospholipid exchange between mycoplasma membranes and lipid vesicles.
    Bittman R; Clejan S
    Isr J Med Sci; 1987 May; 23(5):398-402. PubMed ID: 3667216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The lantibiotic nisin induces transmembrane movement of a fluorescent phospholipid.
    Moll GN; Konings WN; Driessen AJ
    J Bacteriol; 1998 Dec; 180(24):6565-70. PubMed ID: 9852000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of membrane phospholipid composition and structural organization on spontaneous lipid transfer between membranes.
    Pankov R; Markovska T; Antonov P; Ivanova L; Momchilova A
    Gen Physiol Biophys; 2006 Sep; 25(3):313-24. PubMed ID: 17197729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.