These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 26368668)

  • 1. Dynamics of an Active-Site Flap Contributes to Catalysis in a JAMM Family Metallo Deubiquitinase.
    Bueno AN; Shrestha RK; Ronau JA; Babar A; Sheedlo MJ; Fuchs JE; Paul LN; Das C
    Biochemistry; 2015 Oct; 54(39):6038-51. PubMed ID: 26368668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the mechanism of deubiquitination by JAMM deubiquitinases from cocrystal structures of the enzyme with the substrate and product.
    Shrestha RK; Ronau JA; Davies CW; Guenette RG; Strieter ER; Paul LN; Das C
    Biochemistry; 2014 May; 53(19):3199-217. PubMed ID: 24787148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of the Thr316Ala mutant of a yeast JAMM deubiquitinase: implication of active-site loop dynamics in catalysis.
    Shrestha R; Das C
    Acta Crystallogr F Struct Biol Commun; 2021 Jun; 77(Pt 6):163-170. PubMed ID: 34100774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of recruitment and activation of the endosome-associated deubiquitinase AMSH.
    Davies CW; Paul LN; Das C
    Biochemistry; 2013 Nov; 52(44):7818-29. PubMed ID: 24151880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and thermodynamic comparison of the catalytic domain of AMSH and AMSH-LP: nearly identical fold but different stability.
    Davies CW; Paul LN; Kim MI; Das C
    J Mol Biol; 2011 Oct; 413(2):416-29. PubMed ID: 21888914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Domain alternation and active site remodeling are conserved structural features of ubiquitin E1.
    Lv Z; Yuan L; Atkison JH; Aldana-Masangkay G; Chen Y; Olsen SK
    J Biol Chem; 2017 Jul; 292(29):12089-12099. PubMed ID: 28572513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Insight into Ubiquitin-Like Protein Recognition and Oligomeric States of JAMM/MPN
    Cao S; Engilberge S; Girard E; Gabel F; Franzetti B; Maupin-Furlow JA
    Structure; 2017 Jun; 25(6):823-833.e6. PubMed ID: 28479062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains.
    Sato Y; Yoshikawa A; Yamagata A; Mimura H; Yamashita M; Ookata K; Nureki O; Iwai K; Komada M; Fukai S
    Nature; 2008 Sep; 455(7211):358-62. PubMed ID: 18758443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR Reveals the Interplay among the AMSH SH3 Binding Motif, STAM2, and Lys63-Linked Diubiquitin.
    Hologne M; Cantrelle FX; Riviere G; Guillière F; Trivelli X; Walker O
    J Mol Biol; 2016 Nov; 428(22):4544-4558. PubMed ID: 27725184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of CYLD USP with Met1- or Lys63-linked diubiquitin reveal mechanisms for dual specificity.
    Sato Y; Goto E; Shibata Y; Kubota Y; Yamagata A; Goto-Ito S; Kubota K; Inoue J; Takekawa M; Tokunaga F; Fukai S
    Nat Struct Mol Biol; 2015 Mar; 22(3):222-9. PubMed ID: 25686088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A conserved acidic residue in phenylalanine hydroxylase contributes to cofactor affinity and catalysis.
    Ronau JA; Paul LN; Fuchs JE; Liedl KR; Abu-Omar MM; Das C
    Biochemistry; 2014 Nov; 53(43):6834-48. PubMed ID: 25295853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribosomal protein eL42 contributes to the catalytic activity of the yeast ribosome at the elongation step of translation.
    Hountondji C; Créchet JB; Tanaka M; Suzuki M; Nakayama JI; Aguida B; Bulygin K; Cognet J; Karpova G; Baouz S
    Biochimie; 2019 Mar; 158():20-33. PubMed ID: 30550856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of Lys48-linked polyubiquitin chain recognition by the Mud1 UBA domain.
    Trempe JF; Brown NR; Lowe ED; Gordon C; Campbell ID; Noble ME; Endicott JA
    EMBO J; 2005 Sep; 24(18):3178-89. PubMed ID: 16138082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary Loss of Activity in De-Ubiquitylating Enzymes of the OTU Family.
    Louis M; Hofmann K; Broemer M
    PLoS One; 2015; 10(11):e0143227. PubMed ID: 26588485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tandem UIMs confer Lys48 ubiquitin chain substrate preference to deubiquitinase USP25.
    Kawaguchi K; Uo K; Tanaka T; Komada M
    Sci Rep; 2017 Mar; 7():45037. PubMed ID: 28327663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of the deubiquitinase USP15 reveals a misaligned catalytic triad and an open ubiquitin-binding channel.
    Ward SJ; Gratton HE; Indrayudha P; Michavila C; Mukhopadhyay R; Maurer SK; Caulton SG; Emsley J; Dreveny I
    J Biol Chem; 2018 Nov; 293(45):17362-17374. PubMed ID: 30228188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specificity of the BRISC deubiquitinating enzyme is not due to selective binding to Lys63-linked polyubiquitin.
    Cooper EM; Boeke JD; Cohen RE
    J Biol Chem; 2010 Apr; 285(14):10344-52. PubMed ID: 20032457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active site alanine mutations convert deubiquitinases into high-affinity ubiquitin-binding proteins.
    Morrow ME; Morgan MT; Clerici M; Growkova K; Yan M; Komander D; Sixma TK; Simicek M; Wolberger C
    EMBO Rep; 2018 Oct; 19(10):. PubMed ID: 30150323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Core domain mutation (S86Y) selectively inactivates polyubiquitin chain synthesis catalyzed by E2-25K.
    Mastrandrea LD; Kasperek EM; Niles EG; Pickart CM
    Biochemistry; 1998 Jul; 37(27):9784-92. PubMed ID: 9657692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nep1, a Schizosaccharomyces pombe deneddylating enzyme.
    Zhou L; Watts FZ
    Biochem J; 2005 Jul; 389(Pt 2):307-14. PubMed ID: 15769255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.