These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 26368693)

  • 1. Gold triple-helix mid-infrared metamaterial by STED-inspired laser lithography.
    Kaschke J; Wegener M
    Opt Lett; 2015 Sep; 40(17):3986-9. PubMed ID: 26368693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On metamaterial circular polarizers based on metal N-helices.
    Kaschke J; Gansel JK; Wegener M
    Opt Express; 2012 Nov; 20(23):26012-20. PubMed ID: 23187416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tapered N-helical metamaterials with three-fold rotational symmetry as improved circular polarizers.
    Kaschke J; Blome M; Burger S; Wegener M
    Opt Express; 2014 Aug; 22(17):19936-46. PubMed ID: 25321204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband terahertz circular polarizers with single- and double-helical array metamaterials.
    Li S; Yang Z; Wang J; Zhao M
    J Opt Soc Am A Opt Image Sci Vis; 2011 Jan; 28(1):19-23. PubMed ID: 21200407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating.
    Jiang ZH; Yun S; Toor F; Werner DH; Mayer TS
    ACS Nano; 2011 Jun; 5(6):4641-7. PubMed ID: 21456579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband circular polarizers constructed using helix-like chiral metamaterials.
    Ji R; Wang SW; Liu X; Chen X; Lu W
    Nanoscale; 2016 Aug; 8(31):14725-9. PubMed ID: 27352818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold helix photonic metamaterial as broadband circular polarizer.
    Gansel JK; Thiel M; Rill MS; Decker M; Bade K; Saile V; von Freymann G; Linden S; Wegener M
    Science; 2009 Sep; 325(5947):1513-5. PubMed ID: 19696310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maskless multiple-beam laser lithography for large-area nanostructure/microstructure fabrication.
    Tang M; Chen ZC; Huang ZQ; Choo YS; Hong MH
    Appl Opt; 2011 Dec; 50(35):6536-42. PubMed ID: 22193133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct writing of metal nanostructures: lithographic tools for nanoplasmonics research.
    Leggett GJ
    ACS Nano; 2011 Mar; 5(3):1575-9. PubMed ID: 21417494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers.
    Zhao Y; Belkin MA; Alù A
    Nat Commun; 2012 May; 3():870. PubMed ID: 22643897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metamaterials with custom emissivity polarization in the near-infrared.
    Bossard JA; Werner DH
    Opt Express; 2013 Feb; 21(3):3872-84. PubMed ID: 23481843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold helix photonic metamaterials: a numerical parameter study.
    Gansel JK; Wegener M; Burger S; Linden S
    Opt Express; 2010 Jan; 18(2):1059-69. PubMed ID: 20173927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable chiroptical response of graphene achiral metamaterials in mid-infrared regime.
    Zhou S; Lai P; Dong G; Li P; Li Y; Zhu Z; Guan C; Shi J
    Opt Express; 2019 May; 27(11):15359-15367. PubMed ID: 31163733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Bioinspired Bilevel Metamaterial for Multispectral Manipulation toward Visible, Multi-Wavelength Detection Lasers and Mid-Infrared Selective Radiation.
    Liu X; Wang P; Xiao C; Fu L; Zhou H; Fan T; Zhang D
    Adv Mater; 2023 Oct; 35(41):e2302844. PubMed ID: 37402134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-single-helix photonic-metamaterial based broadband optical range circular polarizer by induced phase lags between helices.
    Behera S; Joseph J
    Appl Opt; 2015 Feb; 54(5):1212-9. PubMed ID: 25968042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography.
    Bückmann T; Stenger N; Kadic M; Kaschke J; Frölich A; Kennerknecht T; Eberl C; Thiel M; Wegener M
    Adv Mater; 2012 May; 24(20):2710-4. PubMed ID: 22495906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarization-independent dual-band terahertz metamaterial absorbers based on gold/parylene-C/silicide structure.
    Wen Y; Ma W; Bailey J; Matmon G; Yu X; Aeppli G
    Appl Opt; 2013 Jul; 52(19):4536-40. PubMed ID: 23842248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-band and polarization-independent infrared absorber based on two-dimensional black phosphorus metamaterials.
    Wang J; Jiang Y; Hu Z
    Opt Express; 2017 Sep; 25(18):22149-22157. PubMed ID: 29041503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 120 nm resolution and 55 nm structure size in STED-lithography.
    Wollhofen R; Katzmann J; Hrelescu C; Jacak J; Klar TA
    Opt Express; 2013 May; 21(9):10831-40. PubMed ID: 23669940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PNIPAM gel-coated gold nanorods for targeted delivery responding to a near-infrared laser.
    Kawano T; Niidome Y; Mori T; Katayama Y; Niidome T
    Bioconjug Chem; 2009 Feb; 20(2):209-12. PubMed ID: 19133725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.