These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 26368749)

  • 1. Investigation of fringing electric field effect on high-resolution blue phase liquid crystal spatial light modulator.
    Yan J; Guo Z; Xing Y; Li Q
    Appl Opt; 2015 Aug; 54(24):7169-74. PubMed ID: 26368749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low voltage and high resolution phase modulator based on blue phase liquid crystals with external compact optical system.
    Yan J; Xing Y; Guo Z; Li Q
    Opt Express; 2015 Jun; 23(12):15256-64. PubMed ID: 26193507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarization properties of a nematic liquid-crystal spatial light modulator for phase modulation.
    Hällstig E; Martin T; Sjöqvist L; Lindgren M
    J Opt Soc Am A Opt Image Sci Vis; 2005 Jan; 22(1):177-84. PubMed ID: 15669628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A polarization-independent blue phase liquid crystal on silicon with low operation voltage.
    Sun C; Lu J
    Sci Rep; 2019 Nov; 9(1):16900. PubMed ID: 31729452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Refraction effect in an in-plane-switching blue phase liquid crystal cell.
    Xu D; Chen Y; Liu Y; Wu ST
    Opt Express; 2013 Oct; 21(21):24721-35. PubMed ID: 24150316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A vertical-field-driven polymer-stabilized blue phase liquid crystal mode to obtain a higher transmittance and lower driving voltage.
    Kim YH; Hur ST; Park CS; Park KW; Choi SW; Kang SW; Kim HR
    Opt Express; 2011 Aug; 19(18):17427-38. PubMed ID: 21935109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low voltage blue phase liquid crystal for spatial light modulators.
    Peng F; Lee YH; Luo Z; Wu ST
    Opt Lett; 2015 Nov; 40(21):5097-100. PubMed ID: 26512528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing the diffraction efficiency of SLM-based holography with respect to the fringing field effect.
    Lingel C; Haist T; Osten W
    Appl Opt; 2013 Oct; 52(28):6877-83. PubMed ID: 24085201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of cell gap on the optoelectronic properties of pure blue-phase liquid crystal devices: estimating the Kerr constant.
    Chi CY; Lin GJ; Hu SS; Tsai SY; Chen TJ; Lin JH; Yang YJ; Wu JJ
    Appl Opt; 2017 Feb; 56(4):1207-1214. PubMed ID: 28158135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical properties of cubic blue phase liquid crystal in photonic microstructures.
    Orzechowski K; Sala-Tefelska MM; Sierakowski MW; Woliński TR; Strzeżysz O; Kula P
    Opt Express; 2019 May; 27(10):14270-14282. PubMed ID: 31163878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blue phase liquid crystal: strategies for phase stabilization and device development.
    Rahman MD; Mohd Said S; Balamurugan S
    Sci Technol Adv Mater; 2015 Jun; 16(3):033501. PubMed ID: 27877782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Holographic display with tilted spatial light modulator.
    Kozacki T
    Appl Opt; 2011 Jul; 50(20):3579-88. PubMed ID: 21743569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarization independent blue-phase liquid crystal cylindrical lens with a resistive film.
    Li Y; Liu Y; Li Q; Wu ST
    Appl Opt; 2012 May; 51(14):2568-72. PubMed ID: 22614475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Throughput Preparation and Machine Learning Screening of a Blue-Phase Liquid Crystal Based on Inkjet Printing.
    He WL; Cui YF; Luo SG; Hu WT; Wang KN; Yang Z; Cao H; Wang D
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-plasmon spatial light modulators based on liquid crystal.
    Caldwell ME; Yeatman EM
    Appl Opt; 1992 Jul; 31(20):3880-91. PubMed ID: 20725364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demonstration of polarization-insensitive spatial light modulation using a single polarization-sensitive spatial light modulator.
    Liu J; Wang J
    Sci Rep; 2015 Jul; 5():9959. PubMed ID: 26146032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase Compensation of the Non-Uniformity of the Liquid Crystal on Silicon Spatial Light Modulator at Pixel Level.
    Zeng Z; Li Z; Fang F; Zhang X
    Sensors (Basel); 2021 Feb; 21(3):. PubMed ID: 33535480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a spatial light modulator using polarization-sensitive digital holography.
    Tiwari V; Gautam SK; Naik DN; Singh RK; Bisht NS
    Appl Opt; 2020 Mar; 59(7):2024-2030. PubMed ID: 32225723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of monodomain polymer-stabilized blue phase liquid crystals using surface acoustic waves.
    Suryantari R; Shih YH; Shih YH; Chen HY; Wu CS; Huang CY
    Opt Lett; 2023 Jan; 48(1):77-80. PubMed ID: 36563373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complete polarization control of light from a liquid crystal spatial light modulator.
    Moreno I; Davis JA; Hernandez TM; Cottrell DM; Sand D
    Opt Express; 2012 Jan; 20(1):364-76. PubMed ID: 22274360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.