These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 26368785)

  • 1. Graphene-based electromagnetically induced transparency with coupling Fabry-Perot resonators.
    Zhuang H; Kong F; Li K; Sheng S
    Appl Opt; 2015 Aug; 54(24):7455-61. PubMed ID: 26368785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators.
    Cao G; Li H; Zhan S; Xu H; Liu Z; He Z; Wang Y
    Opt Express; 2013 Apr; 21(8):9198-205. PubMed ID: 23609630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable control of electromagnetically induced transparency analogue in a compact graphene-based waveguide.
    Wang L; Li W; Jiang X
    Opt Lett; 2015 May; 40(10):2325-8. PubMed ID: 26393730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices.
    Han Z; Bozhevolnyi SI
    Opt Express; 2011 Feb; 19(4):3251-7. PubMed ID: 21369147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analogue of electromagnetically induced transparency in integrated plasmonics with radiative and subradiant resonators.
    Wang T; Zhang Y; Hong Z; Han Z
    Opt Express; 2014 Sep; 22(18):21529-34. PubMed ID: 25321531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamically tunable plasmon induced transparency in a graphene-based nanoribbon waveguide coupled with graphene rectangular resonators structure on sapphire substrate.
    Han X; Wang T; Li X; Xiao S; Zhu Y
    Opt Express; 2015 Dec; 23(25):31945-55. PubMed ID: 26698986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Method proposing a slow light ring resonator structure coupled with a metal-dielectric-metal waveguide system based on plasmonic induced transparency.
    Keleshtery MH; Kaatuzian H; Mir A; Zandi A
    Appl Opt; 2017 May; 56(15):4496-4504. PubMed ID: 29047882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electromagnetically induced transparency-like effect in microring-Bragg gratings based coupling resonant system.
    Zhang Z; Ng GI; Hu T; Qiu H; Guo X; Rouifed MS; Liu C; Wang H
    Opt Express; 2016 Oct; 24(22):25665-25675. PubMed ID: 27828502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Double plasmonic nanodisks design for electromagnetically induced transparency and slow light.
    Lai G; Liang R; Zhang Y; Bian Z; Yi L; Zhan G; Zhao R
    Opt Express; 2015 Mar; 23(5):6554-61. PubMed ID: 25836873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromagnetically induced transparency in an all-dielectric nano-metamaterial for slow light application.
    Wang Q; Yu L; Gao H; Chu S; Peng W
    Opt Express; 2019 Nov; 27(24):35012-35026. PubMed ID: 31878678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic EIT-like switching in bright-dark-bright plasmon resonators.
    Chen J; Wang P; Chen C; Lu Y; Ming H; Zhan Q
    Opt Express; 2011 Mar; 19(7):5970-8. PubMed ID: 21451622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discerning electromagnetically induced transparency from Autler-Townes splitting in plasmonic waveguide and coupled resonators system.
    He LY; Wang TJ; Gao YP; Cao C; Wang C
    Opt Express; 2015 Sep; 23(18):23817-26. PubMed ID: 26368475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical bistability based on an analog of electromagnetically induced transparency in plasmonic waveguide-coupled resonators.
    Cui Y; Zeng C
    Appl Opt; 2012 Nov; 51(31):7482-6. PubMed ID: 23128694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamically Tunable Resonant Strength in Electromagnetically Induced Transparency (EIT) Analogue by Hybrid Metal-Graphene Metamaterials.
    Lao C; Liang Y; Wang X; Fan H; Wang F; Meng H; Guo J; Liu H; Wei Z
    Nanomaterials (Basel); 2019 Jan; 9(2):. PubMed ID: 30704085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induced transparency in nanoscale plasmonic resonator systems.
    Lu H; Liu X; Mao D; Gong Y; Wang G
    Opt Lett; 2011 Aug; 36(16):3233-5. PubMed ID: 21847218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High quality factor electromagnetically induced transparency-like effect in coupled guided-mode resonant systems.
    Han Y; Yang J; He X; Huang J; Zhang J; Chen D; Zhang Z
    Opt Express; 2019 Mar; 27(5):7712-7718. PubMed ID: 30876331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherent interference induced transparency in self-coupled optical waveguide-based resonators.
    Zhou L; Ye T; Chen J
    Opt Lett; 2011 Jan; 36(1):13-5. PubMed ID: 21209671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulating the plasmon-induced transparency in terahertz metamaterials.
    Li Z; Ma Y; Huang R; Singh R; Gu J; Tian Z; Han J; Zhang W
    Opt Express; 2011 Apr; 19(9):8912-9. PubMed ID: 21643144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic analog of electromagnetically induced transparency in nanostructure graphene.
    Shi X; Han D; Dai Y; Yu Z; Sun Y; Chen H; Liu X; Zi J
    Opt Express; 2013 Nov; 21(23):28438-43. PubMed ID: 24514355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photonic coherence effects from dual-waveguide coupled pair of co-resonant microring resonators.
    Naweed A
    Opt Express; 2015 May; 23(10):12573-81. PubMed ID: 26074512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.