BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 26368883)

  • 1. Mineralogy and astrobiology detection using laser remote sensing instrument.
    Abedin MN; Bradley AT; Sharma SK; Misra AK; Lucey PG; McKay CP; Ismail S; Sandford SP
    Appl Opt; 2015 Sep; 54(25):7598-611. PubMed ID: 26368883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compact remote multisensing instrument for planetary surfaces and atmospheres characterization.
    Nurul Abedin M; Bradley AT; Ismail S; Sharma SK; Sandford SP
    Appl Opt; 2013 May; 52(14):3116-26. PubMed ID: 23669823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Planetary geochemical investigations using Raman and laser-induced breakdown spectroscopy.
    Clegg SM; Wiens R; Misra AK; Sharma SK; Lambert J; Bender S; Newell R; Nowak-Lovato K; Smrekar S; Dyar MD; Maurice S
    Appl Spectrosc; 2014; 68(9):925-36. PubMed ID: 25226246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New trends in telescopic remote Raman spectroscopic instrumentation.
    Sharma SK
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1008-22. PubMed ID: 17723317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined Spectroscopic Analysis of Terrestrial Analogs from a Simulated Astronaut Mission Using the Laser-Induced Breakdown Spectroscopy (LIBS) Raman Sensor: Implications for Mars.
    Lalla EA; Konstantinidis M; Lymer E; Gilmour CM; Freemantle J; Such P; Cote K; Groemer G; Martinez-Frias J; Cloutis EA; Daly MG
    Appl Spectrosc; 2021 Sep; 75(9):1093-1113. PubMed ID: 33988039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Next generation laser-based standoff spectroscopy techniques for Mars exploration.
    Gasda PJ; Acosta-Maeda TE; Lucey PG; Misra AK; Sharma SK; Taylor GJ
    Appl Spectrosc; 2015; 69(2):173-92. PubMed ID: 25587811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating Habitability with an Integrated Rock-Climbing Robot and Astrobiology Instrument Suite.
    Uckert K; Parness A; Chanover N; Eshelman EJ; Abcouwer N; Nash J; Detry R; Fuller C; Voelz D; Hull R; Flannery D; Bhartia R; Manatt KS; Abbey WJ; Boston P
    Astrobiology; 2020 Dec; 20(12):1427-1449. PubMed ID: 33052709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests.
    Wiens RC; Maurice S; Robinson SH; Nelson AE; Cais P; Bernardi P; Newell RT; Clegg S; Sharma SK; Storms S; Deming J; Beckman D; Ollila AM; Gasnault O; Anderson RB; André Y; Michael Angel S; Arana G; Auden E; Beck P; Becker J; Benzerara K; Bernard S; Beyssac O; Borges L; Bousquet B; Boyd K; Caffrey M; Carlson J; Castro K; Celis J; Chide B; Clark K; Cloutis E; Cordoba EC; Cousin A; Dale M; Deflores L; Delapp D; Deleuze M; Dirmyer M; Donny C; Dromart G; George Duran M; Egan M; Ervin J; Fabre C; Fau A; Fischer W; Forni O; Fouchet T; Fresquez R; Frydenvang J; Gasway D; Gontijo I; Grotzinger J; Jacob X; Jacquinod S; Johnson JR; Klisiewicz RA; Lake J; Lanza N; Laserna J; Lasue J; Le Mouélic S; Legett C; Leveille R; Lewin E; Lopez-Reyes G; Lorenz R; Lorigny E; Love SP; Lucero B; Madariaga JM; Madsen M; Madsen S; Mangold N; Manrique JA; Martinez JP; Martinez-Frias J; McCabe KP; McConnochie TH; McGlown JM; McLennan SM; Melikechi N; Meslin PY; Michel JM; Mimoun D; Misra A; Montagnac G; Montmessin F; Mousset V; Murdoch N; Newsom H; Ott LA; Ousnamer ZR; Pares L; Parot Y; Pawluczyk R; Glen Peterson C; Pilleri P; Pinet P; Pont G; Poulet F; Provost C; Quertier B; Quinn H; Rapin W; Reess JM; Regan AH; Reyes-Newell AL; Romano PJ; Royer C; Rull F; Sandoval B; Sarrao JH; Sautter V; Schoppers MJ; Schröder S; Seitz D; Shepherd T; Sobron P; Dubois B; Sridhar V; Toplis MJ; Torre-Fdez I; Trettel IA; Underwood M; Valdez A; Valdez J; Venhaus D; Willis P
    Space Sci Rev; 2021; 217(1):4. PubMed ID: 33380752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Complex Molecules Detector (CMOLD): A Fluidic-Based Instrument Suite to Search for (Bio)chemical Complexity on Mars and Icy Moons.
    Fairén AG; Gómez-Elvira J; Briones C; Prieto-Ballesteros O; Rodríguez-Manfredi JA; López Heredero R; Belenguer T; Moral AG; Moreno-Paz M; Parro V
    Astrobiology; 2020 Sep; 20(9):1076-1096. PubMed ID: 32856927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman efficiencies of natural rocks and minerals: performance of a remote Raman system for planetary exploration at a distance of 10 meters.
    Stopar JD; Lucey PG; Sharma SK; Misra AK; Taylor GJ; Hubble HW
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2315-23. PubMed ID: 16029852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars.
    Bazalgette Courrèges-Lacoste G; Ahlers B; Pérez FR
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1023-8. PubMed ID: 17466575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman Characterization of the CanMars Rover Field Campaign Samples Using the Raman Laser Spectrometer ExoMars Simulator: Implications for Mars and Planetary Exploration.
    Lalla EA; Konstantinidis M; Veneranda M; Daly MG; Manrique JA; Lymer EA; Freemantle J; Cloutis EA; Stromberg JM; Shkolyar S; Caudill C; Applin D; Vago JL; Rull F; Lopez-Reyes G
    Astrobiology; 2022 Apr; 22(4):416-438. PubMed ID: 35041521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-resolved Raman spectroscopy for in situ planetary mineralogy.
    Blacksberg J; Rossman GR; Gleckler A
    Appl Opt; 2010 Sep; 49(26):4951-62. PubMed ID: 20830184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remote quantitative analysis of minerals based on multispectral line-calibrated laser-induced breakdown spectroscopy (LIBS).
    Wan X; Wang P
    Appl Spectrosc; 2014; 68(10):1132-6. PubMed ID: 25239065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: application to Mars polar exploration.
    Arp ZA; Cremers DA; Wiens RC; Wayne DM; Sallé B; Maurice S
    Appl Spectrosc; 2004 Aug; 58(8):897-909. PubMed ID: 15324495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Challenges Analyzing Gypsum on Mars by Raman Spectroscopy.
    Marshall CP; Olcott Marshall A
    Astrobiology; 2015 Sep; 15(9):761-9. PubMed ID: 26317670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation.
    Sharma SK; Misra AK; Lucey PG; Lentz RC
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):468-76. PubMed ID: 19084470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How to Detect Life on Icy Moons.
    Sephton MA; Waite JH; Brockwell TG
    Astrobiology; 2018 Jul; 18(7):843-855. PubMed ID: 30035638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery of Microbes from Subsurface Europa Analog Environments: An Efficient Mechanical-Thermal Probe for Collecting Biological Samples from the Subsurface of Icy Moons.
    Davis A; Ford M
    Astrobiology; 2023 Jan; 23(1):105-126. PubMed ID: 36399600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Two Components Approach for Long Range Remote Raman and Laser-Induced Breakdown (LIBS) Spectroscopy Using Low Laser Pulse Energy.
    Misra AK; Acosta-Maeda TE; Porter JN; Berlanga G; Muchow D; Sharma SK; Chee B
    Appl Spectrosc; 2019 Mar; 73(3):320-328. PubMed ID: 30347998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.