These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 26368954)

  • 1. Large area x-ray collimator-the zone plate approach.
    Menz B; Braig C; Bräuninger H; Burwitz V; Hartner G; Predehl P
    Appl Opt; 2015 Sep; 54(26):7851-8. PubMed ID: 26368954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Point spread function measurement of an X-ray beam focused by a multilayer zone plate with narrow annular aperture.
    Takano H; Konishi S; Koyama T; Tsusaka Y; Ichimaru S; Ohchi T; Takenaka H; Kagoshima Y
    J Synchrotron Radiat; 2014 Mar; 21(Pt 2):446-8. PubMed ID: 24562567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-aperture high-resolution x-ray collimator for the Solar Maximum Mission.
    Nobles RA; Acton LW; Joki EG; Leibacher JW; Peterson RC
    Appl Opt; 1980 Sep; 19(17):2957-66. PubMed ID: 20234535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution Fresnel zone plate fabrication by achromatic spatial frequency multiplication with extreme ultraviolet radiation.
    Sarkar SS; Solak HH; Saidani M; David C; van der Veen JF
    Opt Lett; 2011 May; 36(10):1860-2. PubMed ID: 21593915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SPECT using a specially designed cone beam collimator.
    Jaszczak RJ; Greer KL; Coleman RE
    J Nucl Med; 1988 Aug; 29(8):1398-405. PubMed ID: 3261333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inverse-phase composite zone plate providing deeper focus than the normal diffraction-limited depth of X-ray microbeams.
    Kagoshima Y; Takayama Y
    J Synchrotron Radiat; 2019 Jan; 26(Pt 1):52-58. PubMed ID: 30655468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimum collimator for proximity X-ray lithography - Theoretical analysis.
    Artioukov IA; Kozhevnikov IV; Kozhevnikova NI
    J Xray Sci Technol; 1998 Jan; 8(3):199-220. PubMed ID: 22388510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Beynon Gabor zone plate: a new tool for de Broglie matter waves and hard X-rays? An off axis and focus intensity investigation.
    Greve MM; Vial AM; Stamnes JJ; Holst B
    Opt Express; 2013 Nov; 21(23):28483-95. PubMed ID: 24514360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High throughput x-ray optics: an overview.
    Gorenstein P
    Appl Opt; 1988 Apr; 27(8):1433-9. PubMed ID: 20531593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A Novel Evaluation Method for Displacement between Carbon Beam Axis and Positioning X-ray Axis Using an Imaging Plate].
    Kurosawa Y; Kubota Y; Takeshita E; Okada R; Ohashi Y; Souda H; Ishii T; Sutou T; Kanai T; Ohno T; Nakano T
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2016 Feb; 72(2):139-48. PubMed ID: 26902378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of a constrained linear monochromator design for neutral atom beams.
    Kaltenbacher T
    Ultramicroscopy; 2016 Apr; 163():62-8. PubMed ID: 26922370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grazing incidence relay optics.
    Chase RC; Krieger AS; Underwood JH
    Appl Opt; 1982 Dec; 21(24):4446-52. PubMed ID: 20401096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the Advanced Satellite for Cosmology and Astrophysics x-ray telescope: preflight calibration and ray tracing.
    Tsusaka Y; Suzuki H; Yamashita K; Kunieda H; Tawara Y; Ogasaka Y; Uchibori Y; Honda H; Itoh M; Awaki H; Tsunemi H; Hayashida K; Nomoto S; Wada M; Miyata E; Serlemitsos PJ; Jalota L; Soong Y
    Appl Opt; 1995 Aug; 34(22):4848-56. PubMed ID: 21052325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new large radius imaging plate camera for high-resolution and high-throughput synchrotron x-ray powder diffraction by multiexposure method.
    Tanaka M; Katsuya Y; Yamamoto A
    Rev Sci Instrum; 2008 Jul; 79(7):075106. PubMed ID: 18681733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficiency of grazing incidence optics: the spiral collimator.
    Artyukov IA; Vinogradov AV; Kozhevnikov IV
    Appl Opt; 1991 Oct; 30(28):4154-7. PubMed ID: 20706517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved active fiber-based retroreflector with intensity stabilization and a polarization monitor for the near UV.
    Wirthl V; Maisenbacher L; Weitenberg J; Hertlein A; Grinin A; Matveev A; Pohl R; Hänsch TW; Udem T
    Opt Express; 2021 Mar; 29(5):7024-7048. PubMed ID: 33726212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perfect Crystals in the Asymmetric Bragg Geometry as Optical Elements for Coherent X-ray Beams.
    Brauer S; Stephenson GB; Sutton M
    J Synchrotron Radiat; 1995 Jul; 2(Pt 4):163-73. PubMed ID: 16714810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of x-ray fluorescence full field imaging using planar square pore micro-channel plate optics.
    Gailhanou M; Sarrazin P; Blake D
    Appl Opt; 2018 Aug; 57(23):6795-6807. PubMed ID: 30129629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a new, fast, user friendly, ray tracing program "CSIM" for the simulation of parallelhole collimators.
    Erturk SS; Del Guerra A
    Comput Methods Programs Biomed; 2013 Jun; 110(3):290-7. PubMed ID: 23347780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-focus x-ray zone plate by stagger arrangement of zones.
    Chen X; Wang X
    Opt Express; 2013 Aug; 21(17):20005-14. PubMed ID: 24105547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.