These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 26368973)

  • 1. Temperature measurement of mineral melt by means of a high-speed camera.
    Bizjan B; Širok B; Drnovšek J; Pušnik I
    Appl Opt; 2015 Sep; 54(26):7978-84. PubMed ID: 26368973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infrared cameras are potential traceable "fixed points" for future thermometry studies.
    Yap Kannan R; Keresztes K; Hussain S; Coats TJ; Bown MJ
    J Med Eng Technol; 2015; 39(8):485-9. PubMed ID: 26468981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical measurement of high-temperature melt flow rate.
    Bizjan B; Širok B; Chen J
    Appl Opt; 2018 May; 57(15):4202-4210. PubMed ID: 29791394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of ethylene content in melt-state random and block polypropylene by near-infrared spectroscopy and chemometrics: influence of a change in sample temperature and its compensation method.
    Watari M; Ozaki Y
    Appl Spectrosc; 2005 May; 59(5):600-10. PubMed ID: 15969805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reliability and validity of skin temperature measurement by telemetry thermistors and a thermal camera during exercise in the heat.
    James CA; Richardson AJ; Watt PW; Maxwell NS
    J Therm Biol; 2014 Oct; 45():141-9. PubMed ID: 25436963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-speed phase-shifting interferometry using triangular prism for time-resolved temperature measurement.
    Shoji E; Komiya A; Okajima J; Kawamura H; Maruyama S
    Appl Opt; 2015 Jul; 54(20):6297-304. PubMed ID: 26193407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MR-based thermometry of laser induced thermotherapy: temperature accuracy and temporal resolution in vitro at 0.2 and 1.5 T magnetic field strengths.
    Vogl TJ; Huebner F; Naguib NN; Bauer RW; Mack MG; Nour-Eldin NE; Meister D
    Lasers Surg Med; 2012 Mar; 44(3):257-65. PubMed ID: 22407543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A small-size transfer blackbody cavity for calibration of infrared ear thermometers.
    Kim GJ; Yoo YS; Kim BH; Lim SD; Hyun Song J
    Physiol Meas; 2014 May; 35(5):753-62. PubMed ID: 24671115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-speed and high-precision PbSe/PbI
    Dortaj H; Dolatyari M; Zarghami A; Alidoust F; Rostami A; Matloub S; Yadipour R
    Sci Rep; 2021 Jan; 11(1):1533. PubMed ID: 33452367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of a new method of measurement and visualization of indoor conditions by infrared thermography.
    Djupkep FB; Maldague X; Bendada A; Bison P
    Rev Sci Instrum; 2013 Aug; 84(8):084906. PubMed ID: 24007095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement Technologies of Light Field Camera: An Overview.
    Hu X; Li Z; Miao L; Fang F; Jiang Z; Zhang X
    Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-speed height measurement by a light-source-stepping method using a linear LED array.
    Fujigaki M; Oura Y; Asai D; Murata Y
    Opt Express; 2013 Oct; 21(20):23169-80. PubMed ID: 24104231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Temperature measurement in the ear canal: comparison of an infrared thermometer with conventional temperature probes and evaluation of clinical factors on infrared measurement].
    Rohrberg M; Fritz U; Weyland W; Braun U
    Anasthesiol Intensivmed Notfallmed Schmerzther; 1997 Jul; 32(7):409-13. PubMed ID: 9340028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Resolution Temperature Measurement of Liquid Stainless Steel Using Hyperspectral Imaging.
    Devesse W; De Baere D; Guillaume P
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28067764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method for the temperature calibration of an infrared camera using water as a radiative source.
    Bower SM; Kou J; Saylor JR
    Rev Sci Instrum; 2009 Sep; 80(9):095107. PubMed ID: 19791964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature Compensation Method for Digital Cameras in 2D and 3D Measurement Applications.
    Adamczyk M; Liberadzki P; Sitnik R
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30380726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Multispectral Radiation Algorithm Based on Emissivity Model Constraints for True Temperature Measurement].
    Liang M; Sun XG; Luan MS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Oct; 35(10):2675-9. PubMed ID: 26904798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a dual infrared and visible near-infrared measurement system for the observation of adiabatic shear bands.
    Pawelko R; Pina V; Hervé P
    Rev Sci Instrum; 2019 Dec; 90(12):124902. PubMed ID: 31893770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation and improvement in the accuracy of a charge-coupled-device-based pyrometer for temperature field measurements of continuous casting billets.
    Bai H; Xie Z; Zhang Y; Hu Z
    Rev Sci Instrum; 2013 Jun; 84(6):064904. PubMed ID: 23822369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum efficiencies, absolute intensities and signal-to-blackbody ratios of high-temperature laser-induced thermographic phosphors.
    Khalid AH; Kontis K
    Luminescence; 2011; 26(6):640-9. PubMed ID: 21618680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.