These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 26369068)

  • 1. Fabrication of a Schottky Device Using CuSe Nanoparticles: Colloidal versus Microwave Digestive Synthesis.
    Kalenga MP; Govindraju S; Airo M; Moloto MJ; Sikhwivhilu LM; Moloto N
    J Nanosci Nanotechnol; 2015 Jun; 15(6):4480-6. PubMed ID: 26369068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic Properties of DNA-Based Schottky Barrier Diodes in Response to Alpha Particles.
    Al-Ta'ii HM; Periasamy V; Amin YM
    Sensors (Basel); 2015 May; 15(5):11836-53. PubMed ID: 26007733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloidally stable selenium@copper selenide core@shell nanoparticles as selenium source for manufacturing of copper-indium-selenide solar cells.
    Dong H; Quintilla A; Cemernjak M; Popescu R; Gerthsen D; Ahlswede E; Feldmann C
    J Colloid Interface Sci; 2014 Feb; 415():103-10. PubMed ID: 24267336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic Characterization of Au/DNA/ITO Metal-Semiconductor-Metal Diode and Its Application as a Radiation Sensor.
    Al-Ta'ii HM; Periasamy V; Amin YM
    PLoS One; 2016; 11(1):e0145423. PubMed ID: 26799703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Thermionic Emission and Low 1/f Noise in Exfoliated Graphene/GaN Schottky Barrier Diode.
    Kumar A; Kashid R; Ghosh A; Kumar V; Singh R
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8213-23. PubMed ID: 26963627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composition-tunable Cu2(Ge(1-x),Sn(x))(S(3-y),Se(y)) colloidal nanocrystals: synthesis and characterization.
    Wu Y; Zhou B; Li M; Yang C; Zhang WH; Li C
    Chem Commun (Camb); 2014 Oct; 50(84):12738-41. PubMed ID: 25198654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave-assisted polyol synthesis of copper nanocrystals without using additional protective agents.
    Kawasaki H; Kosaka Y; Myoujin Y; Narushima T; Yonezawa T; Arakawa R
    Chem Commun (Camb); 2011 Jul; 47(27):7740-2. PubMed ID: 21647527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Au/ZnO Schottky nanodiode using mesoporous silica film as template.
    Gao F; Naik SP; Okubo T
    J Nanosci Nanotechnol; 2007 Aug; 7(8):2894-8. PubMed ID: 17685313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave synthesis of nanoparticles and their antifungal activities.
    Henam SD; Ahmad F; Shah MA; Parveen S; Wani AH
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Apr; 213():337-341. PubMed ID: 30711904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compression stiffness of porous nanostructures from self-assembly of branched nanocrystals.
    Ceseracciu L; Miszta K; De Angelis F; Marras S; Prato M; Brescia R; Scarpellini A; Manna L
    Nanoscale; 2013 Jan; 5(2):681-6. PubMed ID: 23223827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave-assisted synthesis of Sb2Se3 submicron rods, compared with those of Bi2Te3 and Sb2Te3.
    Zhou B; Zhu JJ
    Nanotechnology; 2009 Feb; 20(8):085604. PubMed ID: 19417452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid size-controlled synthesis of dextran-coated, 64Cu-doped iron oxide nanoparticles.
    Wong RM; Gilbert DA; Liu K; Louie AY
    ACS Nano; 2012 Apr; 6(4):3461-7. PubMed ID: 22417124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct observation of Brownian dynamics of hard colloidal nanorods.
    Maeda H; Maeda Y
    Nano Lett; 2007 Nov; 7(11):3329-35. PubMed ID: 17914852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amorphous Cu-In-S nanoparticles as precursors for CuInSe2 thin-film solar cells with a high efficiency.
    Ahn S; Choi YJ; Kim K; Eo YJ; Cho A; Gwak J; Yun JH; Shin K; Ahn SK; Yoon K
    ChemSusChem; 2013 Jul; 6(7):1282-7. PubMed ID: 23681958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compositionally tunable photoluminescence emission in Cu2ZnSn(S(1-x)Se(x))4 nanocrystals.
    Singh A; Singh S; Levcenko S; Unold T; Laffir F; Ryan KM
    Angew Chem Int Ed Engl; 2013 Aug; 52(35):9120-4. PubMed ID: 23780738
    [No Abstract]   [Full Text] [Related]  

  • 16. Synthesis of solvent-stabilized colloidal nanoparticles of platinum, rhodium, and ruthenium by microwave-polyol process.
    He B; Chen Y; Liu H; Liu Y
    J Nanosci Nanotechnol; 2005 Feb; 5(2):266-70. PubMed ID: 15853146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Nano Al Interlayer on the Schottky Contact Property Between Metal and Hg3In2Te6 Wafer.
    Wang X; Fu L; Li Y
    J Nanosci Nanotechnol; 2015 Sep; 15(9):7113-6. PubMed ID: 26716293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Key Parameters on the Microwave Assisted Synthesis of Magnetic Nanoparticles for MRI Contrast Agents.
    Brollo MEF; Veintemillas-Verdaguer S; Salván CM; Morales MDP
    Contrast Media Mol Imaging; 2017; 2017():8902424. PubMed ID: 29348738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of CuInTe2 and CuInTe(2-x)Se(x) ternary gradient quantum dots and their application to solar cells.
    Kim S; Kang M; Kim S; Heo JH; Noh JH; Im SH; Seok SI; Kim SW
    ACS Nano; 2013 Jun; 7(6):4756-63. PubMed ID: 23656273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural, chemical, and electrical parameters of Au/MoS
    Padma R; Lee G; Kang JS; Jun SC
    J Colloid Interface Sci; 2019 Aug; 550():48-56. PubMed ID: 31051340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.