BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 26369158)

  • 1. Highly Ordered Vertical Arrays of TiO2/ZnO Hybrid Nanowires: Synthesis and Electrochemical Characterization.
    Gujarati TP; Ashish AG; Rai M; Shaijumon MM
    J Nanosci Nanotechnol; 2015 Aug; 15(8):5833-9. PubMed ID: 26369158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of TiO
    Ahmed F; Pervez SA; Aljaafari A; Alshoaibi A; Abuhimd H; Oh J; Koo BH
    Micromachines (Basel); 2019 Oct; 10(11):. PubMed ID: 31683615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-Step Microwave-Assisted Hydrothermal Preparation of Zn-ZnO(Nw)-rGO Electrodes for Supercapacitor Applications.
    Bandas C; Nicolaescu M; Popescu MI; Orha C; Căprărescu S; Lazau C
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ordered Polypyrrole Nanowire Arrays Grown on a Carbon Cloth Substrate for a High-Performance Pseudocapacitor Electrode.
    Huang ZH; Song Y; Xu XX; Liu XX
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25506-13. PubMed ID: 26509281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-step synthesis of TiO₂ nanorod arrays on Ti foil for supercapacitor application.
    Zheng Z; Chen J; Yoshida R; Gao X; Tarr K; Ikuhara YH; Zhou W
    Nanotechnology; 2014 Oct; 25(43):435406. PubMed ID: 25301790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vertically aligned ZnO nanorod core-polypyrrole conducting polymer sheath and nanotube arrays for electrochemical supercapacitor energy storage.
    Sidhu NK; Rastogi AC
    Nanoscale Res Lett; 2014; 9(1):453. PubMed ID: 25246867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical Performance of Nitrogen-Doped TiO
    Appadurai T; Subramaniyam C; Kuppusamy R; Karazhanov S; Subramanian B
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31416287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A unique core-shell structured ZnO/NiO heterojunction to improve the performance of supercapacitors produced using a chemical bath deposition approach.
    Chebrolu VT; Balakrishnan B; Cho I; Bak JS; Kim HJ
    Dalton Trans; 2020 Oct; 49(41):14432-14444. PubMed ID: 33044469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile fabrication of NH4CoPO4·H2O nano/microstructures and their primarily application as electrochemical supercapacitor.
    Pang H; Yan Z; Wang W; Chen J; Zhang J; Zheng H
    Nanoscale; 2012 Sep; 4(19):5946-53. PubMed ID: 22833216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vertically aligned ZnO@CuS@PEDOT core@shell nanorod arrays decorated with MnO₂ nanoparticles for a high-performance and semi-transparent supercapacitor electrode.
    Rodríguez-Moreno J; Navarrete-Astorga E; Dalchiele EA; Schrebler R; Ramos-Barrado JR; Martín F
    Chem Commun (Camb); 2014 May; 50(42):5652-5. PubMed ID: 24756158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanofibers wrapped with zinc oxide nano-flakes as promising electrode material for supercapacitors.
    Pant B; Park M; Ojha GP; Park J; Kuk YS; Lee EJ; Kim HY; Park SJ
    J Colloid Interface Sci; 2018 Jul; 522():40-47. PubMed ID: 29574267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Nanowire Length on Charge Transport in Vertically Aligned Gold Nanowire Array Electrodes.
    Nakanishi H; Kikuta I; Teraji S; Norisuye T; Tran-Cong-Miyata Q
    Langmuir; 2018 Dec; 34(51):15674-15680. PubMed ID: 30485111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical detection of DNA hybridization based on three-dimensional ZnO nanowires/graphite hybrid microfiber structure.
    Zhang J; Han D; Yang R; Ji Y; Liu J; Yu X
    Bioelectrochemistry; 2019 Aug; 128():126-132. PubMed ID: 30981929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chitin and Chitosan Based Hybrid Nanocomposites for Super Capacitor Applications.
    Anandhavelu S; Dhansekaran V; Sethuraman V; Park HJ
    J Nanosci Nanotechnol; 2017 Feb; 17(2):1321-328. PubMed ID: 29683567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphology engineering of ZnO nanostructures for high performance supercapacitors: enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires.
    He X; Yoo JE; Lee MH; Bae J
    Nanotechnology; 2017 Jun; 28(24):245402. PubMed ID: 28383286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and opto-electrochemical properties of ZnO nanowires grown on n-Si substrate.
    Ladanov M; Ram MK; Matthews G; Kumar A
    Langmuir; 2011 Jul; 27(14):9012-7. PubMed ID: 21688806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile ZnO-based nanomaterial and its fabrication as a supercapacitor electrode: synthesis, characterization and electrochemical studies.
    Shaheen I; Ahmad KS; Zequine C; Gupta RK; Thomas AG; Malik MA
    RSC Adv; 2021 Jul; 11(38):23374-23384. PubMed ID: 35479794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, characterization and electrochemical performance of graphene decorated with 1D NiMoO4 · nH2O nanorods.
    Ghosh D; Giri S; Das CK
    Nanoscale; 2013 Nov; 5(21):10428-37. PubMed ID: 24056616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of the electrochemical capacitance of TiO2 nanotube arrays through controlled phase transformation of anatase to rutile.
    Salari M; Aboutalebi SH; Chidembo AT; Nevirkovets IP; Konstantinov K; Liu HK
    Phys Chem Chem Phys; 2012 Apr; 14(14):4770-9. PubMed ID: 22382869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Design of ZnO Nanorod Arrays Coated with MnOx for High Electrochemical Stability of a Pseudocapacitor Electrode.
    Chen HC; Lyu YR; Fang A; Lee GJ; Karuppasamy L; Wu JJ; Lin CK; Anandan S; Chen CY
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32155885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.