These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26369420)

  • 1. Confinement, Desolvation, And Electrosorption Effects on the Diffusion of Ions in Nanoporous Carbon Electrodes.
    Pean C; Daffos B; Rotenberg B; Levitz P; Haefele M; Taberna PL; Simon P; Salanne M
    J Am Chem Soc; 2015 Oct; 137(39):12627-32. PubMed ID: 26369420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oscillation Charging Dynamics in Nanopore Supercapacitors with Organic Electrolyte.
    Mo T; Zhou J; He H; Zhu B
    ACS Appl Mater Interfaces; 2023 Nov; 15(44):51274-51280. PubMed ID: 37878835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Horn-like Pore Entrance Boosts Charging Dynamics and Charge Storage of Nanoporous Supercapacitors.
    Mo T; Peng J; Dai W; Chen M; Presser V; Feng G
    ACS Nano; 2023 Aug; 17(15):14974-14980. PubMed ID: 37498344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the dynamics of charging in nanoporous carbon-based supercapacitors.
    Péan C; Merlet C; Rotenberg B; Madden PA; Taberna PL; Daffos B; Salanne M; Simon P
    ACS Nano; 2014 Feb; 8(2):1576-83. PubMed ID: 24417256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion dynamics in porous carbon electrodes in supercapacitors using in situ infrared spectroelectrochemistry.
    Richey FW; Dyatkin B; Gogotsi Y; Elabd YA
    J Am Chem Soc; 2013 Aug; 135(34):12818-26. PubMed ID: 23915377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon-carbon supercapacitors: Beyond the average pore size or how electrolyte confinement and inaccessible pores affect the capacitance.
    Lahrar EH; Simon P; Merlet C
    J Chem Phys; 2021 Nov; 155(18):184703. PubMed ID: 34773950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capacitance of Nanoporous Carbon-Based Supercapacitors Is a Trade-Off between the Concentration and the Separability of the Ions.
    Burt R; Breitsprecher K; Daffos B; Taberna PL; Simon P; Birkett G; Zhao XS; Holm C; Salanne M
    J Phys Chem Lett; 2016 Oct; 7(19):4015-4021. PubMed ID: 27661760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin of Enhanced Performance in Nanoporous Electrical Double Layer Capacitors: Insights on Micropore Structure and Electrolyte Composition from Molecular Simulations.
    Uralcan B; Uralcan IB
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):16800-16808. PubMed ID: 35377144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly confined ions store charge more efficiently in supercapacitors.
    Merlet C; Péan C; Rotenberg B; Madden PA; Daffos B; Taberna PL; Simon P; Salanne M
    Nat Commun; 2013; 4():2701. PubMed ID: 24165568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrosorption selectivity of ions from mixtures of electrolytes inside nanopores.
    Hou CH; Taboada-Serrano P; Yiacoumi S; Tsouris C
    J Chem Phys; 2008 Dec; 129(22):224703. PubMed ID: 19071935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-Ion Oligomerization Inside Electrified Carbon Micropores and its Effect on Capacitive Charge Storage.
    Wei J; Zhong L; Xia H; Lv Z; Diao C; Zhang W; Li X; Du Y; Xi S; Salanne M; Chen X; Li S
    Adv Mater; 2022 Jan; 34(4):e2107439. PubMed ID: 34699650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors.
    Griffin JM; Forse AC; Tsai WY; Taberna PL; Simon P; Grey CP
    Nat Mater; 2015 Aug; 14(8):812-9. PubMed ID: 26099110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of Ion Electrosorption in Metal-Organic Framework Micropores with In Operando Small-Angle Neutron Scattering.
    He L; Yang L; Dincă M; Zhang R; Li J
    Angew Chem Int Ed Engl; 2020 Jun; 59(24):9773-9779. PubMed ID: 32160393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Perspectives on the Charging Mechanisms of Supercapacitors.
    Forse AC; Merlet C; Griffin JM; Grey CP
    J Am Chem Soc; 2016 May; 138(18):5731-44. PubMed ID: 27031622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of adsorption and confinement on nanoporous electrochemistry.
    Bae JH; Han JH; Han D; Chung TD
    Faraday Discuss; 2013; 164():361-76. PubMed ID: 24466674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrosorption capacitance of nanostructured carbon-based materials.
    Hou CH; Liang C; Yiacoumi S; Dai S; Tsouris C
    J Colloid Interface Sci; 2006 Oct; 302(1):54-61. PubMed ID: 16842809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced Faradaic Contributions and Fast Charging of Nanoporous Carbon Electrodes in a Concentrated Sodium Nitrate Aqueous Electrolyte for Supercapacitors.
    Abbas Q; Gollas B; Presser V
    Energy Technol (Weinh); 2019 Sep; 7(9):1900430. PubMed ID: 31598464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silica-grafted ionic liquids for revealing the respective charging behaviors of cations and anions in supercapacitors.
    Dou Q; Liu L; Yang B; Lang J; Yan X
    Nat Commun; 2017 Dec; 8(1):2188. PubMed ID: 29259171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of ordered intermediate porosity on ion transport in hierarchically nanoporous electrodes.
    Chae WS; Gough DV; Ham SK; Robinson DB; Braun PV
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3973-9. PubMed ID: 22799397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A carbon nanopore model to quantify structure and kinetics of ion electrosorption with in situ small-angle X-ray scattering.
    Prehal C; Koczwara C; Jäckel N; Amenitsch H; Presser V; Paris O
    Phys Chem Chem Phys; 2017 Jun; 19(23):15549-15561. PubMed ID: 28581546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.