These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
410 related articles for article (PubMed ID: 26369618)
21. POM-Based MOF-Derived Co Yang XL; Ye YS; Wang ZM; Zhang ZH; Zhao YL; Yang F; Zhu ZY; Wei T ACS Omega; 2020 Oct; 5(40):26230-26236. PubMed ID: 33073149 [TBL] [Abstract][Full Text] [Related]
22. Si/Ti2O3/Reduced Graphene Oxide Nanocomposite Anodes for Lithium-Ion Batteries with Highly Enhanced Cyclic Stability. Park AR; Son DY; Kim JS; Lee JY; Park NG; Park J; Lee JK; Yoo PJ ACS Appl Mater Interfaces; 2015 Aug; 7(33):18483-90. PubMed ID: 26244752 [TBL] [Abstract][Full Text] [Related]
23. ZnO/Co3O4 porous nanocomposites derived from MOFs: room-temperature ferromagnetism and high catalytic oxidation of CO. Hu L; Zhang P; Sun Y; Bao S; Chen Q Chemphyschem; 2013 Dec; 14(17):3953-9. PubMed ID: 24203802 [TBL] [Abstract][Full Text] [Related]
24. Nitrogen-doped porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries. Wang L; Zheng Y; Wang X; Chen S; Xu F; Zuo L; Wu J; Sun L; Li Z; Hou H; Song Y ACS Appl Mater Interfaces; 2014 May; 6(10):7117-25. PubMed ID: 24802130 [TBL] [Abstract][Full Text] [Related]
25. Metal coordination polymer derived mesoporous Co3O4 nanorods with uniform TiO2 coating as advanced anodes for lithium ion batteries. Geng H; Ang H; Ding X; Tan H; Guo G; Qu G; Yang Y; Zheng J; Yan Q; Gu H Nanoscale; 2016 Feb; 8(5):2967-73. PubMed ID: 26781747 [TBL] [Abstract][Full Text] [Related]
26. Controllable Synthesis of Mesoporous Peapod-like Co3O4@Carbon Nanotube Arrays for High-Performance Lithium-Ion Batteries. Gu D; Li W; Wang F; Bongard H; Spliethoff B; Schmidt W; Weidenthaler C; Xia Y; Zhao D; Schüth F Angew Chem Int Ed Engl; 2015 Jun; 54(24):7060-4. PubMed ID: 25914341 [TBL] [Abstract][Full Text] [Related]
27. Facile Synthesis of Ultrasmall CoS2 Nanoparticles within Thin N-Doped Porous Carbon Shell for High Performance Lithium-Ion Batteries. Wang Q; Zou R; Xia W; Ma J; Qiu B; Mahmood A; Zhao R; Yang Y; Xia D; Xu Q Small; 2015 Jun; 11(21):2511-7. PubMed ID: 25688868 [TBL] [Abstract][Full Text] [Related]
28. Rational Design of 1-D Co Cho SH; Jung JW; Kim C; Kim ID Sci Rep; 2017 Mar; 7():45105. PubMed ID: 28345589 [TBL] [Abstract][Full Text] [Related]
29. Novel peapod-like Ni₂P nanoparticles with improved electrochemical properties for hydrogen evolution and lithium storage. Bai Y; Zhang H; Li X; Liu L; Xu H; Qiu H; Wang Y Nanoscale; 2015 Jan; 7(4):1446-53. PubMed ID: 25502331 [TBL] [Abstract][Full Text] [Related]
30. Architecting hierarchical shell porosity of hollow prussian blue-derived iron oxide for enhanced Li storage. Zhao Z; Liu X; Luan C; Liu X; Wang D; Qin T; Sui L; Zhang W J Microsc; 2019 Nov; 276(2):53-62. PubMed ID: 31603242 [TBL] [Abstract][Full Text] [Related]
31. Nano electrochemical reactors of Fe2O3 nanoparticles embedded in shells of nitrogen-doped hollow carbon spheres as high-performance anodes for lithium-ion batteries. Zheng F; He M; Yang Y; Chen Q Nanoscale; 2015 Feb; 7(8):3410-7. PubMed ID: 25631451 [TBL] [Abstract][Full Text] [Related]
32. Prussion blue-supported annealing chemical reaction route synthesized double-shelled Fe₂O₃/Co₃O₄ hollow microcubes as anode materials for lithium-ion battery. Li Z; Li B; Yin L; Qi Y ACS Appl Mater Interfaces; 2014 Jun; 6(11):8098-107. PubMed ID: 24833015 [TBL] [Abstract][Full Text] [Related]
33. Germanium anode with excellent lithium storage performance in a germanium/lithium-cobalt oxide lithium-ion battery. Li X; Yang Z; Fu Y; Qiao L; Li D; Yue H; He D ACS Nano; 2015 Feb; 9(2):1858-67. PubMed ID: 25629917 [TBL] [Abstract][Full Text] [Related]
34. Facile fabrication of porous Ni(x)Co(3-x)O4 nanosheets with enhanced electrochemical performance as anode materials for Li-ion batteries. Zheng F; Zhu D; Chen Q ACS Appl Mater Interfaces; 2014 Jun; 6(12):9256-64. PubMed ID: 24853470 [TBL] [Abstract][Full Text] [Related]
35. Hydrothermal-template synthesis and electrochemical properties of Co Fan H; Yi G; Tian Q; Zhang X; Xing B; Zhang C; Chen L; Zhang Y RSC Adv; 2020 Oct; 10(60):36794-36805. PubMed ID: 35517925 [TBL] [Abstract][Full Text] [Related]
36. Synthesis of nanoparticle-assembled Zn Gu Y; Han Y; Hou W; Lan H; Zhang H; Deng X; Wang L; Liu J Dalton Trans; 2020 Feb; 49(7):2112-2120. PubMed ID: 31993596 [TBL] [Abstract][Full Text] [Related]
37. Self-assembly of hierarchical star-like Co3O4 micro/nanostructures and their application in lithium ion batteries. Li L; Seng KH; Chen Z; Guo Z; Liu HK Nanoscale; 2013 Mar; 5(5):1922-8. PubMed ID: 23354317 [TBL] [Abstract][Full Text] [Related]
38. CoMoO4 nanoparticles anchored on reduced graphene oxide nanocomposites as anodes for long-life lithium-ion batteries. Yao J; Gong Y; Yang S; Xiao P; Zhang Y; Keyshar K; Ye G; Ozden S; Vajtai R; Ajayan PM ACS Appl Mater Interfaces; 2014 Nov; 6(22):20414-22. PubMed ID: 25380030 [TBL] [Abstract][Full Text] [Related]
39. Octahedral Co3O4 particles threaded by carbon nanotube arrays as integrated structure anodes for lithium ion batteries. Zhou G; Li L; Zhang Q; Li N; Li F Phys Chem Chem Phys; 2013 Apr; 15(15):5582-7. PubMed ID: 23462812 [TBL] [Abstract][Full Text] [Related]
40. Designed hybrid nanostructure with catalytic effect: beyond the theoretical capacity of SnO2 anode material for lithium ion batteries. Wang Y; Huang ZX; Shi Y; Wong JI; Ding M; Yang HY Sci Rep; 2015 Mar; 5():9164. PubMed ID: 25776280 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]