These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 26369698)

  • 1. Monolithic III-V on Silicon Plasmonic Nanolaser Structure for Optical Interconnects.
    Li N; Liu K; Sorger VJ; Sadana DK
    Sci Rep; 2015 Sep; 5():14067. PubMed ID: 26369698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous-wave quantum dot photonic crystal lasers grown on on-axis Si (001).
    Zhou T; Tang M; Xiang G; Xiang B; Hark S; Martin M; Baron T; Pan S; Park JS; Liu Z; Chen S; Zhang Z; Liu H
    Nat Commun; 2020 Feb; 11(1):977. PubMed ID: 32080180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Room-Temperature Lasing from Monolithically Integrated GaAs Microdisks on Silicon.
    Wirths S; Mayer BF; Schmid H; Sousa M; Gooth J; Riel H; Moselund KE
    ACS Nano; 2018 Mar; 12(3):2169-2175. PubMed ID: 29365252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monolithic integration of embedded III-V lasers on SOI.
    Wei WQ; He A; Yang B; Wang ZH; Huang JZ; Han D; Ming M; Guo X; Su Y; Zhang JJ; Wang T
    Light Sci Appl; 2023 Apr; 12(1):84. PubMed ID: 37009809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monolithically Integrated High-β Nanowire Lasers on Silicon.
    Mayer B; Janker L; Loitsch B; Treu J; Kostenbader T; Lichtmannecker S; Reichert T; Morkötter S; Kaniber M; Abstreiter G; Gies C; Koblmüller G; Finley JJ
    Nano Lett; 2016 Jan; 16(1):152-6. PubMed ID: 26618638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Telecom InP/InGaAs nanolaser array directly grown on (001) silicon-on-insulator.
    Han Y; Ng WK; Xue Y; Li Q; Wong KS; Lau KM
    Opt Lett; 2019 Feb; 44(4):767-770. PubMed ID: 30767982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneous and Monolithic 3D Integration of III-V-Based Radio Frequency Devices on Si CMOS Circuits.
    Jeong J; Kim SK; Kim J; Geum DM; Kim D; Jo E; Jeong H; Park J; Jang JH; Choi S; Kwon I; Kim S
    ACS Nano; 2022 Jun; 16(6):9031-9040. PubMed ID: 35437991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monolithically Integrated Perovskite Semiconductor Lasers on Silicon Photonic Chips by Scalable Top-Down Fabrication.
    Cegielski PJ; Giesecke AL; Neutzner S; Porschatis C; Gandini M; Schall D; Perini CAR; Bolten J; Suckow S; Kataria S; Chmielak B; Wahlbrink T; Petrozza A; Lemme MC
    Nano Lett; 2018 Nov; 18(11):6915-6923. PubMed ID: 30278610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical Interconnects Finally Seeing the Light in Silicon Photonics: Past the Hype.
    Mekawey H; Elsayed M; Ismail Y; Swillam MA
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-Chip Monolithically Fabricated Plasmonic-Waveguide Nanolaser.
    Ho YL; Clark JK; Kamal ASA; Delaunay JJ
    Nano Lett; 2018 Dec; 18(12):7769-7776. PubMed ID: 30423249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beyond CMOS: heterogeneous integration of III-V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems.
    Kazior TE
    Philos Trans A Math Phys Eng Sci; 2014 Mar; 372(2012):20130105. PubMed ID: 24567473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A MoTe
    Bie YQ; Grosso G; Heuck M; Furchi MM; Cao Y; Zheng J; Bunandar D; Navarro-Moratalla E; Zhou L; Efetov DK; Taniguchi T; Watanabe K; Kong J; Englund D; Jarillo-Herrero P
    Nat Nanotechnol; 2017 Dec; 12(12):1124-1129. PubMed ID: 29209014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-Chip Monolithically Integrated Ultraviolet Low-Threshold Plasmonic Metal-Semiconductor Heterojunction Nanolasers.
    Sun JY; Nguyen DH; Liu JM; Lo CY; Ma YR; Chen YJ; Yi JY; Huang JZ; Giap H; Nguyen HYT; Liao CD; Lin MY; Lai CC
    Adv Sci (Weinh); 2023 Oct; 10(28):e2301493. PubMed ID: 37559172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unlocking the monolithic integration scenario: optical coupling between GaSb diode lasers epitaxially grown on patterned Si substrates and passive SiN waveguides.
    Remis A; Monge-Bartolome L; Paparella M; Gilbert A; Boissier G; Grande M; Blake A; O'Faolain L; Cerutti L; Rodriguez JB; Tournié E
    Light Sci Appl; 2023 Jun; 12(1):150. PubMed ID: 37328485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. III-V Nanowire Complementary Metal-Oxide Semiconductor Transistors Monolithically Integrated on Si.
    Svensson J; Dey AW; Jacobsson D; Wernersson LE
    Nano Lett; 2015 Dec; 15(12):7898-904. PubMed ID: 26595174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-Controlled Growth of Monolithic InGaAs/InP Quantum Well Nanopillar Lasers on Silicon.
    Schuster F; Kapraun J; Malheiros-Silveira GN; Deshpande S; Chang-Hasnain CJ
    Nano Lett; 2017 Apr; 17(4):2697-2702. PubMed ID: 28328224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum cascade lasers grown on silicon.
    Nguyen-Van H; Baranov AN; Loghmari Z; Cerutti L; Rodriguez JB; Tournet J; Narcy G; Boissier G; Patriarche G; Bahriz M; Tournié E; Teissier R
    Sci Rep; 2018 May; 8(1):7206. PubMed ID: 29739962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semiconductor plasmonic nanolasers: current status and perspectives.
    Gwo S; Shih CK
    Rep Prog Phys; 2016 Aug; 79(8):086501. PubMed ID: 27459210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel integration technique for silicon/III-V hybrid laser.
    Dong P; Hu TC; Liow TY; Chen YK; Xie C; Luo X; Lo GQ; Kopf R; Tate A
    Opt Express; 2014 Nov; 22(22):26854-61. PubMed ID: 25401832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. InAs/GaAs quantum dot narrow ridge lasers epitaxially grown on SOI substrates for silicon photonic integration.
    Wei WQ; Feng Q; Guo JJ; Guo MC; Wang JH; Wang ZH; Wang T; Zhang JJ
    Opt Express; 2020 Aug; 28(18):26555-26563. PubMed ID: 32906927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.