BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 26370510)

  • 1. Tristetraprolin Recruits Eukaryotic Initiation Factor 4E2 To Repress Translation of AU-Rich Element-Containing mRNAs.
    Tao X; Gao G
    Mol Cell Biol; 2015 Nov; 35(22):3921-32. PubMed ID: 26370510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recruitment of the 4EHP-GYF2 cap-binding complex to tetraproline motifs of tristetraprolin promotes repression and degradation of mRNAs with AU-rich elements.
    Fu R; Olsen MT; Webb K; Bennett EJ; Lykke-Andersen J
    RNA; 2016 Mar; 22(3):373-82. PubMed ID: 26763119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element.
    Hitti E; Iakovleva T; Brook M; Deppenmeier S; Gruber AD; Radzioch D; Clark AR; Blackshear PJ; Kotlyarov A; Gaestel M
    Mol Cell Biol; 2006 Mar; 26(6):2399-407. PubMed ID: 16508014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AU-rich-element-dependent translation repression requires the cooperation of tristetraprolin and RCK/P54.
    Qi MY; Wang ZZ; Zhang Z; Shao Q; Zeng A; Li XQ; Li WQ; Wang C; Tian FJ; Li Q; Zou J; Qin YW; Brewer G; Huang S; Jing Q
    Mol Cell Biol; 2012 Mar; 32(5):913-28. PubMed ID: 22203041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The p38/MK2-driven exchange between tristetraprolin and HuR regulates AU-rich element-dependent translation.
    Tiedje C; Ronkina N; Tehrani M; Dhamija S; Laass K; Holtmann H; Kotlyarov A; Gaestel M
    PLoS Genet; 2012 Sep; 8(9):e1002977. PubMed ID: 23028373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human Cells Cultured under Physiological Oxygen Utilize Two Cap-binding Proteins to recruit Distinct mRNAs for Translation.
    Timpano S; Uniacke J
    J Biol Chem; 2016 May; 291(20):10772-82. PubMed ID: 27002144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MicroRNAs recruit eIF4E2 to repress translation of target mRNAs.
    Chen S; Gao G
    Protein Cell; 2017 Oct; 8(10):750-761. PubMed ID: 28755203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bi-phased regulation of the post-transcriptional inflammatory response by Tristetraprolin levels.
    Mahmoud L; Moghrabi W; Khabar KSA; Hitti EG
    RNA Biol; 2019 Mar; 16(3):309-319. PubMed ID: 30664390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tristetraprolin (TTP): interactions with mRNA and proteins, and current thoughts on mechanisms of action.
    Brooks SA; Blackshear PJ
    Biochim Biophys Acta; 2013; 1829(6-7):666-79. PubMed ID: 23428348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LARP4 Is Regulated by Tumor Necrosis Factor Alpha in a Tristetraprolin-Dependent Manner.
    Mattijssen S; Maraia RJ
    Mol Cell Biol; 2016 Feb; 36(4):574-84. PubMed ID: 26644407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Knock-In Tristetraprolin (TTP) Zinc Finger Point Mutation in Mice: Comparison with Complete TTP Deficiency.
    Lai WS; Stumpo DJ; Qiu L; Faccio R; Blackshear PJ
    Mol Cell Biol; 2018 Feb; 38(4):. PubMed ID: 29203639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tristetraprolin Recruits the Herpes Simplex Virion Host Shutoff RNase to AU-Rich Elements in Stress Response mRNAs To Enable Their Cleavage.
    Shu M; Taddeo B; Roizman B
    J Virol; 2015 May; 89(10):5643-50. PubMed ID: 25762736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ARE-binding protein ZFP36L1 interacts with CNOT1 to directly repress translation via a deadenylation-independent mechanism.
    Otsuka H; Fukao A; Tomohiro T; Adachi S; Suzuki T; Takahashi A; Funakami Y; Natsume T; Yamamoto T; Duncan KE; Fujiwara T
    Biochimie; 2020 Jul; 174():49-56. PubMed ID: 32311426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct recruitment of human eIF4E isoforms to processing bodies and stress granules.
    Frydryskova K; Masek T; Borcin K; Mrvova S; Venturi V; Pospisek M
    BMC Mol Biol; 2016 Aug; 17(1):21. PubMed ID: 27578149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. P38 activation induces the dissociation of tristetraprolin from Argonaute 2 to increase ARE-mRNA stabilization.
    Qi MY; Song JW; Zhang Z; Huang S; Jing Q
    Mol Biol Cell; 2018 Apr; 29(8):988-1002. PubMed ID: 29444957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A synonymous polymorphism of the Tristetraprolin (TTP) gene, an AU-rich mRNA-binding protein, affects translation efficiency and response to Herceptin treatment in breast cancer patients.
    Griseri P; Bourcier C; Hieblot C; Essafi-Benkhadir K; Chamorey E; Touriol C; Pagès G
    Hum Mol Genet; 2011 Dec; 20(23):4556-68. PubMed ID: 21875902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TTP and BRF proteins nucleate processing body formation to silence mRNAs with AU-rich elements.
    Franks TM; Lykke-Andersen J
    Genes Dev; 2007 Mar; 21(6):719-35. PubMed ID: 17369404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of protein kinase Cdelta reduces tristetraprolin expression by destabilizing its mRNA in activated macrophages.
    Leppänen T; Jalonen U; Korhonen R; Tuominen RK; Moilanen E
    Eur J Pharmacol; 2010 Feb; 628(1-3):220-5. PubMed ID: 19925787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of mRNA turnover in the regulation of tristetraprolin expression: evidence for an extracellular signal-regulated kinase-specific, AU-rich element-dependent, autoregulatory pathway.
    Brooks SA; Connolly JE; Rigby WF
    J Immunol; 2004 Jun; 172(12):7263-71. PubMed ID: 15187101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression, purification, and biochemical characterization of the antiinflammatory tristetraprolin: a zinc-dependent mRNA binding protein affected by posttranslational modifications.
    Cao H
    Biochemistry; 2004 Nov; 43(43):13724-38. PubMed ID: 15504035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.