BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

470 related articles for article (PubMed ID: 26370545)

  • 1. Comprehensive transcriptome analysis of Crocus sativus for discovery and expression of genes involved in apocarotenoid biosynthesis.
    Baba SA; Mohiuddin T; Basu S; Swarnkar MK; Malik AH; Wani ZA; Abbas N; Singh AK; Ashraf N
    BMC Genomics; 2015 Sep; 16(1):698. PubMed ID: 26370545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo transcriptome assembly and comprehensive expression profiling in Crocus sativus to gain insights into apocarotenoid biosynthesis.
    Jain M; Srivastava PL; Verma M; Ghangal R; Garg R
    Sci Rep; 2016 Mar; 6():22456. PubMed ID: 26936416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification, cloning and characterization of an ultrapetala transcription factor CsULT1 from Crocus: a novel regulator of apocarotenoid biosynthesis.
    Ashraf N; Jain D; Vishwakarma RA
    BMC Plant Biol; 2015 Feb; 15():25. PubMed ID: 25640597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crocus transcription factors CstMYB1 and CstMYB1R2 modulate apocarotenoid metabolism by regulating carotenogenic genes.
    Bhat ZY; Mohiuddin T; Kumar A; López-Jiménez AJ; Ashraf N
    Plant Mol Biol; 2021 Sep; 107(1-2):49-62. PubMed ID: 34417937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives.
    Castillo R; Fernández JA; Gómez-Gómez L
    Plant Physiol; 2005 Oct; 139(2):674-89. PubMed ID: 16183835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome wide identification, phylogenetic analysis, and expression profiling of zinc-finger transcription factors from Crocus sativus L.
    Malik AH; Ashraf N
    Mol Genet Genomics; 2017 Jun; 292(3):619-633. PubMed ID: 28247040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-species transcriptome analyses for the regulation of crocins biosynthesis in Crocus.
    Ahrazem O; Argandoña J; Fiore A; Rujas A; Rubio-Moraga Á; Castillo R; Gómez-Gómez L
    BMC Genomics; 2019 Apr; 20(1):320. PubMed ID: 31029081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome analysis in tissue sectors with contrasting crocins accumulation provides novel insights into apocarotenoid biosynthesis and regulation during chromoplast biogenesis.
    Ahrazem O; Argandoña J; Fiore A; Aguado C; Luján R; Rubio-Moraga Á; Marro M; Araujo-Andrade C; Loza-Alvarez P; Diretto G; Gómez-Gómez L
    Sci Rep; 2018 Feb; 8(1):2843. PubMed ID: 29434251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mortierella alpina CS10E4, an oleaginous fungal endophyte of Crocus sativus L. enhances apocarotenoid biosynthesis and stress tolerance in the host plant.
    Wani ZA; Kumar A; Sultan P; Bindu K; Riyaz-Ul-Hassan S; Ashraf N
    Sci Rep; 2017 Aug; 7(1):8598. PubMed ID: 28819197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-molecule real-time transcript sequencing identified flowering regulatory genes in Crocus sativus.
    Qian X; Sun Y; Zhou G; Yuan Y; Li J; Huang H; Xu L; Li L
    BMC Genomics; 2019 Nov; 20(1):857. PubMed ID: 31726972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional genomics of apocarotenoids in saffron: insights from chemistry, molecular biology and therapeutic applications.
    Dhar MK; Sharma M; Bhat A; Chrungoo NK; Kaul S
    Brief Funct Genomics; 2017 Nov; 16(6):336-347. PubMed ID: 28369196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UGT709G1: a novel uridine diphosphate glycosyltransferase involved in the biosynthesis of picrocrocin, the precursor of safranal in saffron (Crocus sativus).
    Diretto G; Ahrazem O; Rubio-Moraga Á; Fiore A; Sevi F; Argandoña J; Gómez-Gómez L
    New Phytol; 2019 Oct; 224(2):725-740. PubMed ID: 31356694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome analysis reveals novel enzymes for apo-carotenoid biosynthesis in saffron and allows construction of a pathway for crocetin synthesis in yeast.
    Tan H; Chen X; Liang N; Chen R; Chen J; Hu C; Li Q; Li Q; Pei W; Xiao W; Yuan Y; Chen W; Zhang L
    J Exp Bot; 2019 Sep; 70(18):4819-4834. PubMed ID: 31056664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas.
    Moraga AR; Nohales PF; Pérez JA; Gómez-Gómez L
    Planta; 2004 Oct; 219(6):955-66. PubMed ID: 15605174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative expression of CsZCD gene and apocarotenoid biosynthesis during stigma development in Crocus sativus L.
    Mir JI; Ahmed N; Wafai AH; Qadri RA
    Physiol Mol Biol Plants; 2012 Oct; 18(4):371-5. PubMed ID: 24082500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential interaction of Or proteins with the PSY enzymes in saffron.
    Ahrazem O; López AJ; Argandoña J; Castillo R; Rubio-Moraga Á; Gómez-Gómez L
    Sci Rep; 2020 Jan; 10(1):552. PubMed ID: 31953512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcript profiling of carotenoid/apocarotenoid biosynthesis genes during corm development of saffron (Crocus sativus L.).
    Sharma M; Kaul S; Dhar MK
    Protoplasma; 2019 Jan; 256(1):249-260. PubMed ID: 30078109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress-induced carotenoid cleavage dioxygenase gene from Crocus sativus.
    Rubio-Moraga A; Rambla JL; Fernández-de-Carmen A; Trapero-Mozos A; Ahrazem O; Orzáez D; Granell A; Gómez-Gómez L
    Plant Mol Biol; 2014 Nov; 86(4-5):555-69. PubMed ID: 25204497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational screening of miRNAs and their targets in saffron (Crocus sativus L.) by transcriptome mining.
    Taheri-Dehkordi A; Naderi R; Martinelli F; Salami SA
    Planta; 2021 Nov; 254(6):117. PubMed ID: 34751821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crocins with high levels of sugar conjugation contribute to the yellow colours of early-spring flowering crocus tepals.
    Rubio Moraga A; Ahrazem O; Rambla JL; Granell A; Gómez Gómez L
    PLoS One; 2013; 8(9):e71946. PubMed ID: 24058441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.