BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 26370581)

  • 1. Molecular mechanism for preQ1-II riboswitch function revealed by molecular dynamics.
    Aytenfisu AH; Liberman JA; Wedekind JE; Mathews DH
    RNA; 2015 Nov; 21(11):1898-907. PubMed ID: 26370581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics.
    Liberman JA; Suddala KC; Aytenfisu A; Chan D; Belashov IA; Salim M; Mathews DH; Spitale RC; Walter NG; Wedekind JE
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3485-94. PubMed ID: 26106162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleobase mutants of a bacterial preQ
    Dutta D; Wedekind JE
    J Biol Chem; 2020 Feb; 295(9):2555-2567. PubMed ID: 31659117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand-Induced Stabilization of a Duplex-like Architecture Is Crucial for the Switching Mechanism of the SAM-III Riboswitch.
    Suresh G; Srinivasan H; Nanda S; Priyakumar UD
    Biochemistry; 2016 Jun; 55(24):3349-60. PubMed ID: 27249101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and function analysis of a type III preQ
    Schroeder GM; Kiliushik D; Jenkins JL; Wedekind JE
    J Biol Chem; 2023 Oct; 299(10):105208. PubMed ID: 37660906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pseudoknot preorganization of the preQ1 class I riboswitch.
    Santner T; Rieder U; Kreutz C; Micura R
    J Am Chem Soc; 2012 Jul; 134(29):11928-31. PubMed ID: 22775200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational capture of the SAM-II riboswitch.
    Haller A; Rieder U; Aigner M; Blanchard SC; Micura R
    Nat Chem Biol; 2011 Jun; 7(6):393-400. PubMed ID: 21532598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural determinants for ligand capture by a class II preQ1 riboswitch.
    Kang M; Eichhorn CD; Feigon J
    Proc Natl Acad Sci U S A; 2014 Feb; 111(6):E663-71. PubMed ID: 24469808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Secondary structural entropy in RNA switch (Riboswitch) identification.
    Manzourolajdad A; Arnold J
    BMC Bioinformatics; 2015 Apr; 16():133. PubMed ID: 25928324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking folding dynamics and function of SAM/SAH riboswitches at the single molecule level.
    Liao TW; Huang L; Wilson TJ; Ganser LR; Lilley DMJ; Ha T
    Nucleic Acids Res; 2023 Sep; 51(17):8957-8969. PubMed ID: 37522343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mg(2+) shifts ligand-mediated folding of a riboswitch from induced-fit to conformational selection.
    Suddala KC; Wang J; Hou Q; Walter NG
    J Am Chem Soc; 2015 Nov; 137(44):14075-83. PubMed ID: 26471732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning a riboswitch response through structural extension of a pseudoknot.
    Soulière MF; Altman RB; Schwarz V; Haller A; Blanchard SC; Micura R
    Proc Natl Acad Sci U S A; 2013 Aug; 110(35):E3256-64. PubMed ID: 23940363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical Conformational Dynamics Confers Thermal Adaptability to preQ
    Gong Z; Yang S; Dong X; Yang QF; Zhu YL; Xiao Y; Tang C
    J Mol Biol; 2020 Jul; 432(16):4523-4543. PubMed ID: 32522558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Molecule Approaches for the Characterization of Riboswitch Folding Mechanisms.
    Boudreault J; Perez-Gonzalez DC; Penedo JC; Lafontaine DA
    Methods Mol Biol; 2015; 1334():101-7. PubMed ID: 26404145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of preQ
    Warnasooriya C; Ling C; Belashov IA; Salim M; Wedekind JE; Ermolenko DN
    RNA Biol; 2019 Sep; 16(9):1086-1092. PubMed ID: 30328747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of pseudoknot base pairing on cotranscriptional structural switching of the fluoride riboswitch.
    Hertz LM; White EN; Kuznedelov K; Cheng L; Yu AM; Kakkaramadam R; Severinov K; Chen A; Lucks JB
    Nucleic Acids Res; 2024 May; 52(8):4466-4482. PubMed ID: 38567721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Folding of the SAM-I riboswitch: a tale with a twist.
    Eschbach SH; St-Pierre P; Penedo JC; Lafontaine DA
    RNA Biol; 2012 May; 9(5):535-41. PubMed ID: 22336759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand Selectivity Mechanism and Conformational Changes in Guanine Riboswitch by Molecular Dynamics Simulations and Free Energy Calculations.
    Hu G; Ma A; Wang J
    J Chem Inf Model; 2017 Apr; 57(4):918-928. PubMed ID: 28345904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structures of Large RNAs and RNA-Protein Complexes: Toward Structure Determination of Riboswitches.
    Grigg JC; Ke A
    Methods Enzymol; 2015; 558():213-232. PubMed ID: 26068743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.