BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 26370738)

  • 1. Thick methacrylate sections devoid of lost caps simplify stereological quantifications based on the optical fractionator design.
    Hasselholt S; Lykkesfeldt J; Overgaard Larsen J
    Anat Rec (Hoboken); 2015 Dec; 298(12):2141-50. PubMed ID: 26370738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of differential shrinkage in frozen brain sections and its implications for the use of guard zones in stereology.
    Carlo CN; Stevens CF
    J Comp Neurol; 2011 Oct; 519(14):2803-10. PubMed ID: 21491430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two distinct events, section compression and loss of particles ("lost caps"), contribute to z-axis distortion and bias in optical disector counting.
    Baryshnikova LM; Von Bohlen Und Halbach O; Kaplan S; Von Bartheld CS
    Microsc Res Tech; 2006 Sep; 69(9):738-56. PubMed ID: 16845675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential tissue shrinkage and compression in the z-axis: implications for optical disector counting in vibratome-, plastic- and cryosections.
    Gardella D; Hatton WJ; Rind HB; Rosen GD; von Bartheld CS
    J Neurosci Methods; 2003 Mar; 124(1):45-59. PubMed ID: 12648764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pronounced loss of cell nuclei and anisotropic deformation of thick sections.
    Andersen ; Gundersen
    J Microsc; 1999 Oct; 196(1):69-73. PubMed ID: 29925207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is there section deformation resulting in differential change of nuclear numerical densities along the z axis of thick methacrylate or paraffin sections?
    Xu W; Guo Y; Xiang Y; Yang ZW
    Microsc Res Tech; 2019 Sep; 82(9):1575-1583. PubMed ID: 31218785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Practicable methods for histological section thickness measurement in quantitative stereological analyses.
    Matenaers C; Popper B; Rieger A; Wanke R; Blutke A
    PLoS One; 2018; 13(2):e0192879. PubMed ID: 29444158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of frozen sections to determine neuronal number in the murine hippocampus and neocortex using the optical disector and optical fractionator.
    Bonthius DJ; McKim R; Koele L; Harb H; Karacay B; Mahoney J; Pantazis NJ
    Brain Res Brain Res Protoc; 2004 Nov; 14(1):45-57. PubMed ID: 15519951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of Particles in the Z-axis of Tissue Sections: Relevance for Counting Methods.
    von Bartheld CS
    Neuroquantology; 2012; 10(1):66-75. PubMed ID: 23874137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue shrinkage and unbiased stereological estimation of particle number and size.
    Dorph-Petersen KA; Nyengaard JR; Gundersen HJ
    J Microsc; 2001 Dec; 204(Pt 3):232-46. PubMed ID: 11903800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lost caps in histological counting methods.
    Hedreen JC
    Anat Rec; 1998 Mar; 250(3):366-72. PubMed ID: 9517853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unbiased stereological estimation of the total number of neurons in thesubdivisions of the rat hippocampus using the optical fractionator.
    West MJ; Slomianka L; Gundersen HJ
    Anat Rec; 1991 Dec; 231(4):482-97. PubMed ID: 1793176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new method for physical disector analyses of numbers and mean volumes of immunohistochemically labeled cells in paraffin sections.
    Hofmann I; Kemter E; Fiedler S; Theobalt N; Fonteyne L; Wolf E; Wanke R; Blutke A
    J Neurosci Methods; 2021 Sep; 361():109272. PubMed ID: 34216707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A concise review of optical, physical and isotropic fractionator techniques in neuroscience studies, including recent developments.
    Deniz ÖG; Altun G; Kaplan AA; Yurt KK; von Bartheld CS; Kaplan S
    J Neurosci Methods; 2018 Dec; 310():45-53. PubMed ID: 30048673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical disector counting in cryosections and vibratome sections underestimates particle numbers: effects of tissue quality.
    Ward TS; Rosen GD; von Bartheld CS
    Microsc Res Tech; 2008 Jan; 71(1):60-8. PubMed ID: 17868132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of cell death in the trochlear nucleus of the chick embryo: calibration of the optical disector counting method reveals systematic bias.
    Hatton WJ; von Bartheld CS
    J Comp Neurol; 1999 Jun; 409(2):169-86. PubMed ID: 10379913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What was wrong with the Abercrombie and empirical cell counting methods? A review.
    Hedreen JC
    Anat Rec; 1998 Mar; 250(3):373-80. PubMed ID: 9517854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The coefficient of error of optical fractionator population size estimates: a computer simulation comparing three estimators.
    Glaser EM; Wilson PD
    J Microsc; 1998 Nov; 192(Pt 2):163-71. PubMed ID: 9853373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design-based estimation of neuronal number and individual neuronal volume in the rat hippocampus.
    Hosseini-Sharifabad M; Nyengaard JR
    J Neurosci Methods; 2007 May; 162(1-2):206-14. PubMed ID: 17368561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of absolute microglial cell numbers in mouse fascia dentata using unbiased and efficient stereological cell counting principles.
    Wirenfeldt M; Dalmau I; Finsen B
    Glia; 2003 Nov; 44(2):129-39. PubMed ID: 14515329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.