BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 26370801)

  • 1. Effect of Low Salt Concentrations on Microbial Changes During Kimchi Fermentation Monitored by PCR-DGGE and Their Sensory Acceptance.
    Ahmadsah LS; Min SG; Han SK; Hong Y; Kim HY
    J Microbiol Biotechnol; 2015 Dec; 25(12):2049-57. PubMed ID: 26370801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of bacterial community changes in fermenting kimchi at two different temperatures using a denaturing gradient gel electrophoresis analysis.
    Hong Y; Yang HS; Chang HC; Kim HY
    J Microbiol Biotechnol; 2013 Jan; 23(1):76-84. PubMed ID: 23314371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of lactic acid bacteria in salted Chinese cabbage by SDS-PAGE and PCR-DGGE.
    Hong Y; Yang HS; Li J; Han SK; Chang HC; Kim HY
    J Sci Food Agric; 2014 Jan; 94(2):296-300. PubMed ID: 23749756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial Community Structure of Korean Cabbage Kimchi and Ingredients with Denaturing Gradient Gel Electrophoresis.
    Hong SW; Choi YJ; Lee HW; Yang JH; Lee MA
    J Microbiol Biotechnol; 2016 Jun; 26(6):1057-62. PubMed ID: 26907755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PCR-DGGE analysis of population dynamics of lactic acid bacteria in kimchi by addition of bacteriocins.
    Jeong M; Kim J; Choi E; Kim JS; Kim WJ
    Food Sci Biotechnol; 2016; 25(4):1123-1128. PubMed ID: 30263384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and Characterization of Kimchi Starters
    Lee KW; Kim GS; Baek AH; Hwang HS; Kwon DY; Kim SG; Lee SY
    J Microbiol Biotechnol; 2020 Jul; 30(7):1060-1066. PubMed ID: 32270659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation between Changes in Microbial/Physicochemical Properties and Persistence of Human Norovirus during Cabbage Kimchi Fermentation.
    Lee HM; Lee JH; Kim SH; Yoon SR; Lee JY; Ha JH
    J Microbiol Biotechnol; 2017 Nov; 27(11):2019-2027. PubMed ID: 29017238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel multiplex PCR for the detection of lactic acid bacteria during kimchi fermentation.
    Cho KM; Math RK; Islam SM; Lim WJ; Hong SY; Kim JM; Yun MG; Cho JJ; Yun HD
    Mol Cell Probes; 2009 Apr; 23(2):90-4. PubMed ID: 19146947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of kimchi microflora using denaturing gradient gel electrophoresis.
    Lee JS; Heo GY; Lee JW; Oh YJ; Park JA; Park YH; Pyun YR; Ahn JS
    Int J Food Microbiol; 2005 Jul; 102(2):143-50. PubMed ID: 15992614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kimchi microflora: history, current status, and perspectives for industrial kimchi production.
    Jung JY; Lee SH; Jeon CO
    Appl Microbiol Biotechnol; 2014 Mar; 98(6):2385-93. PubMed ID: 24419800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Arginine Catabolism by Lactic Acid Bacteria Isolated from Kimchi.
    Hwang H; Lee JH
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30469432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactic acid bacteria starter in combination with sodium chloride controls pathogenic Escherichia coli (EPEC, ETEC, and EHEC) in kimchi.
    Choi SJ; Yang SY; Yoon KS
    Food Microbiol; 2021 Dec; 100():103868. PubMed ID: 34416967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of LAB and Fungi in Laru, a Fermentation Starter, by PCR-DGGE, SDS-PAGE, and MALDI-TOF MS.
    Ahmadsah LSF; Kim E; Jung YS; Kim HY
    J Microbiol Biotechnol; 2018 Jan; 28(1):32-39. PubMed ID: 29081085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation.
    Jung JY; Lee SH; Lee HJ; Seo HY; Park WS; Jeon CO
    Int J Food Microbiol; 2012 Feb; 153(3):378-87. PubMed ID: 22189023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity and dynamics of bacterial populations during spontaneous sorghum fermentations used to produce ting, a South African food.
    Madoroba E; Steenkamp ET; Theron J; Scheirlinck I; Cloete TE; Huys G
    Syst Appl Microbiol; 2011 May; 34(3):227-34. PubMed ID: 21300507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial succession and metabolite changes during long-term storage of Kimchi.
    Jeong SH; Lee SH; Jung JY; Choi EJ; Jeon CO
    J Food Sci; 2013 May; 78(5):M763-9. PubMed ID: 23550842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metatranscriptomic analysis of lactic acid bacterial gene expression during kimchi fermentation.
    Jung JY; Lee SH; Jin HM; Hahn Y; Madsen EL; Jeon CO
    Int J Food Microbiol; 2013 May; 163(2-3):171-9. PubMed ID: 23558201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of combining two lactic acid bacteria as a starter culture on model kimchi fermentation.
    Lee JJ; Choi YJ; Lee MJ; Park SJ; Oh SJ; Yun YR; Min SG; Seo HY; Park SH; Lee MA
    Food Res Int; 2020 Oct; 136():109591. PubMed ID: 32846617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Source Tracking and Succession of Kimchi Lactic Acid Bacteria during Fermentation.
    Lee SH; Jung JY; Jeon CO
    J Food Sci; 2015 Aug; 80(8):M1871-7. PubMed ID: 26133985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mixed starter of Lactococcus lactis and Leuconostoc citreum for extending kimchi shelf-life.
    Kim MJ; Lee HW; Lee ME; Roh SW; Kim TW
    J Microbiol; 2019 Jun; 57(6):479-484. PubMed ID: 31073899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.