These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 26370818)

  • 21. Removal of Heavy Metals and Metalloids by Amino-Modified Biochar Supporting Nanoscale Zero-Valent Iron.
    Yang J; Ma T; Li X; Tu J; Dang Z; Yang C
    J Environ Qual; 2018 Sep; 47(5):1196-1204. PubMed ID: 30272773
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Feasibility of nanoscale zero-valent iron to enhance the removal efficiencies of heavy metals from polluted soils by organic acids.
    Cao Y; Zhang S; Zhong Q; Wang G; Xu X; Li T; Wang L; Jia Y; Li Y
    Ecotoxicol Environ Saf; 2018 Oct; 162():464-473. PubMed ID: 30015193
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction.
    Wen J; Yi Y; Zeng G
    J Environ Manage; 2016 Aug; 178():63-69. PubMed ID: 27136618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A cost effective method for immobilization of Cu and Ni polluted river sediment with nZVI synthesized from leaf extract.
    Slijepčević N; Pilipović DT; Kerkez Đ; Krčmar D; Bečelić-Tomin M; Beljin J; Dalmacija B
    Chemosphere; 2021 Jan; 263():127816. PubMed ID: 32835965
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Binding strength-associated toxicity reduction by birnessite and hydroxyapatite in Pb and Cd contaminated sediments.
    Lee S; An J; Kim YJ; Nam K
    J Hazard Mater; 2011 Feb; 186(2-3):2117-22. PubMed ID: 21255927
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Leachability of heavy metals in loess-amended dredged sediment from Northwest of China.
    Zang F; Wang S; Nan Z; Zhao C; Sun H; Huang W; Bao L
    Ecotoxicol Environ Saf; 2019 Nov; 183():109561. PubMed ID: 31437730
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In situ remediation of hexavalent chromium contaminated soil by CMC-stabilized nanoscale zero-valent iron composited with biochar.
    Zhang R; Zhang N; Fang Z
    Water Sci Technol; 2018 Mar; 77(5-6):1622-1631. PubMed ID: 29595164
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemical fraction, leachability, and bioaccessibility of heavy metals in contaminated soils, Northeast China.
    Yutong Z; Qing X; Shenggao L
    Environ Sci Pollut Res Int; 2016 Dec; 23(23):24107-24114. PubMed ID: 27640054
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distributions, fluxes, and toxicities of heavy metals in sediment pore water from tributaries of the Ziya River system, northern China.
    Zhu X; Shan B; Tang W; Li S; Rong N
    Environ Sci Pollut Res Int; 2016 Mar; 23(6):5516-26. PubMed ID: 26573312
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface sediment properties and heavy metal pollution assessment in the Pearl River Estuary, China.
    Zhao G; Ye S; Yuan H; Ding X; Wang J
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):2966-2979. PubMed ID: 27844323
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China.
    Ip CC; Li XD; Zhang G; Wai OW; Li YS
    Environ Pollut; 2007 May; 147(2):311-23. PubMed ID: 17000039
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI).
    Fu R; Yang Y; Xu Z; Zhang X; Guo X; Bi D
    Chemosphere; 2015 Nov; 138():726-34. PubMed ID: 26267258
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Chemical speciation and risk assessment of heavy metals in the middle part of Yarlung Zangbo surface sediments].
    Bai JK; Li CL; Kang SC; Chen PF; Wang JL
    Huan Jing Ke Xue; 2014 Sep; 35(9):3346-51. PubMed ID: 25518650
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Batch and column studies of the stabilization of toxic heavy metals in dredged marine sediments by hematite after bioremediation.
    Mamindy-Pajany Y; Geret F; Hurel C; Marmier N
    Environ Sci Pollut Res Int; 2013 Aug; 20(8):5212-9. PubMed ID: 23370851
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stabilized chitosan/Fe(0)-nanoparticle beads to remove heavy metals from polluted sediments.
    Liu T; Sun Y; Wang ZL
    Water Sci Technol; 2016; 73(5):1090-7. PubMed ID: 26942531
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanomaterials application for heavy metals recovery from polluted water: The combination of nano zero-valent iron and carbon nanotubes. Competitive adsorption non-linear modeling.
    Vilardi G; Mpouras T; Dermatas D; Verdone N; Polydera A; Di Palma L
    Chemosphere; 2018 Jun; 201():716-729. PubMed ID: 29547860
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation and assessment of heavy metals in surface sediments of Ganjiang River, China.
    Ji Y; Zhangi J; Huang X; Bai C; Chen X
    J Environ Biol; 2014 Nov; 35(6):1173-9. PubMed ID: 25522522
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solid-liquid-solid extraction of heavy metals (Cr, Cu, Cd, Ni and Pb) in aqueous systems of zeolite-sewage sludge.
    Sprynskyy M
    J Hazard Mater; 2009 Jan; 161(2-3):1377-83. PubMed ID: 18538472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The behavior of heavy metals in tidal flat sediments during fresh water leaching.
    Li Q; Liu Y; Du Y; Cui Z; Shi L; Wang L; Li H
    Chemosphere; 2011 Feb; 82(6):834-8. PubMed ID: 21131022
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Influence of the river-lake relation change on the distribution of heavy metal and ecological risk assessment in the surface sediment of Poyang Lake].
    Liu WQ; Ni ZK; Wu ZQ; Wang SR; Zeng QR
    Huan Jing Ke Xue; 2014 May; 35(5):1750-8. PubMed ID: 25055662
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.