These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

601 related articles for article (PubMed ID: 26370848)

  • 1. Molecular mechanisms for mitochondrial adaptation to exercise training in skeletal muscle.
    Drake JC; Wilson RJ; Yan Z
    FASEB J; 2016 Jan; 30(1):13-22. PubMed ID: 26370848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Parkin and endurance training on mitochondrial turnover in skeletal muscle.
    Chen CCW; Erlich AT; Hood DA
    Skelet Muscle; 2018 Mar; 8(1):10. PubMed ID: 29549884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Aging and Exercise on Mitochondrial Quality Control in Skeletal Muscle.
    Kim Y; Triolo M; Hood DA
    Oxid Med Cell Longev; 2017; 2017():3165396. PubMed ID: 28656072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial adaptations to high-volume exercise training are rapidly reversed after a reduction in training volume in human skeletal muscle.
    Granata C; Oliveira RS; Little JP; Renner K; Bishop DJ
    FASEB J; 2016 Oct; 30(10):3413-3423. PubMed ID: 27402675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct patterns of skeletal muscle mitochondria fusion, fission and mitophagy upon duration of exercise training.
    Arribat Y; Broskey NT; Greggio C; Boutant M; Conde Alonso S; Kulkarni SS; Lagarrigue S; Carnero EA; Besson C; Cantó C; Amati F
    Acta Physiol (Oxf); 2019 Feb; 225(2):e13179. PubMed ID: 30144291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endurance Exercise and the Regulation of Skeletal Muscle Metabolism.
    Booth FW; Ruegsegger GN; Toedebusch RG; Yan Z
    Prog Mol Biol Transl Sci; 2015; 135():129-51. PubMed ID: 26477913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation by exercise of skeletal muscle content of mitochondria and GLUT4.
    Holloszy JO
    J Physiol Pharmacol; 2008 Dec; 59 Suppl 7():5-18. PubMed ID: 19258654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle.
    Wang L; Mascher H; Psilander N; Blomstrand E; Sahlin K
    J Appl Physiol (1985); 2011 Nov; 111(5):1335-44. PubMed ID: 21836044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptations of Skeletal Muscle Mitochondria to Obesity, Exercise, and Polyunsaturated Fatty Acids.
    Chen PB; Yang JS; Park Y
    Lipids; 2018 Mar; 53(3):271-278. PubMed ID: 29663395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skeletal muscle mitochondria: a major player in exercise, health and disease.
    Russell AP; Foletta VC; Snow RJ; Wadley GD
    Biochim Biophys Acta; 2014 Apr; 1840(4):1276-84. PubMed ID: 24291686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial adaptations in aged skeletal muscle: effect of exercise training.
    Ziaaldini MM; Hosseini SR; Fathi M
    Physiol Res; 2017 Mar; 66(1):1-14. PubMed ID: 27982690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of gene expression and mitochondrial biogenesis in the muscular adaptation to endurance exercise.
    Joseph AM; Pilegaard H; Litvintsev A; Leick L; Hood DA
    Essays Biochem; 2006; 42():13-29. PubMed ID: 17144877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exercise training protects against aging-induced mitochondrial fragmentation in mouse skeletal muscle in a PGC-1α dependent manner.
    Halling JF; Ringholm S; Olesen J; Prats C; Pilegaard H
    Exp Gerontol; 2017 Oct; 96():1-6. PubMed ID: 28577890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xanthine oxidase inhibition attenuates skeletal muscle signaling following acute exercise but does not impair mitochondrial adaptations to endurance training.
    Wadley GD; Nicolas MA; Hiam DS; McConell GK
    Am J Physiol Endocrinol Metab; 2013 Apr; 304(8):E853-62. PubMed ID: 23462817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nutrition and Training Influences on the Regulation of Mitochondrial Adenosine Diphosphate Sensitivity and Bioenergetics.
    Holloway GP
    Sports Med; 2017 Mar; 47(Suppl 1):13-21. PubMed ID: 28332118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exercise training attenuates aging-associated mitochondrial dysfunction in rat skeletal muscle: role of PGC-1α.
    Kang C; Chung E; Diffee G; Ji LL
    Exp Gerontol; 2013 Nov; 48(11):1343-50. PubMed ID: 23994518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1.
    Baar K; Wende AR; Jones TE; Marison M; Nolte LA; Chen M; Kelly DP; Holloszy JO
    FASEB J; 2002 Dec; 16(14):1879-86. PubMed ID: 12468452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exercise-Induced Mitophagy in Skeletal Muscle and Heart.
    Guan Y; Drake JC; Yan Z
    Exerc Sport Sci Rev; 2019 Jul; 47(3):151-156. PubMed ID: 30985475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postexercise whole body heat stress additively enhances endurance training-induced mitochondrial adaptations in mouse skeletal muscle.
    Tamura Y; Matsunaga Y; Masuda H; Takahashi Y; Takahashi Y; Terada S; Hoshino D; Hatta H
    Am J Physiol Regul Integr Comp Physiol; 2014 Oct; 307(7):R931-43. PubMed ID: 25080501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unravelling the mechanisms regulating muscle mitochondrial biogenesis.
    Hood DA; Tryon LD; Carter HN; Kim Y; Chen CC
    Biochem J; 2016 Aug; 473(15):2295-314. PubMed ID: 27470593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.