These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 26371175)
1. Pregnancy-induced remodeling of heart valves. Pierlot CM; Moeller AD; Lee JM; Wells SM Am J Physiol Heart Circ Physiol; 2015 Nov; 309(9):H1565-78. PubMed ID: 26371175 [TBL] [Abstract][Full Text] [Related]
2. Physiological remodeling of the mitral valve during pregnancy. Wells SM; Pierlot CM; Moeller AD Am J Physiol Heart Circ Physiol; 2012 Oct; 303(7):H878-92. PubMed ID: 22886410 [TBL] [Abstract][Full Text] [Related]
3. Biaxial Creep Resistance and Structural Remodeling of the Aortic and Mitral Valves in Pregnancy. Pierlot CM; Moeller AD; Lee JM; Wells SM Ann Biomed Eng; 2015 Aug; 43(8):1772-85. PubMed ID: 25564325 [TBL] [Abstract][Full Text] [Related]
4. Load-dependent extracellular matrix organization in atrioventricular heart valves: differences and similarities. Alavi SH; Sinha A; Steward E; Milliken JC; Kheradvar A Am J Physiol Heart Circ Physiol; 2015 Jul; 309(2):H276-84. PubMed ID: 26001411 [TBL] [Abstract][Full Text] [Related]
5. A computational multi-scale approach to investigate mechanically-induced changes in tricuspid valve anterior leaflet microstructure. Thomas VS; Lai V; Amini R Acta Biomater; 2019 Aug; 94():524-535. PubMed ID: 31229629 [TBL] [Abstract][Full Text] [Related]
6. Differences in collagen cross-linking between the four valves of the bovine heart: a possible role in adaptation to mechanical fatigue. Aldous IG; Veres SP; Jahangir A; Lee JM Am J Physiol Heart Circ Physiol; 2009 Jun; 296(6):H1898-906. PubMed ID: 19329765 [TBL] [Abstract][Full Text] [Related]
7. An investigation of layer-specific tissue biomechanics of porcine atrioventricular valve anterior leaflets. Kramer KE; Ross CJ; Laurence DW; Babu AR; Wu Y; Towner RA; Mir A; Burkhart HM; Holzapfel GA; Lee CH Acta Biomater; 2019 Sep; 96():368-384. PubMed ID: 31260822 [TBL] [Abstract][Full Text] [Related]
8. [Quantitative-morphological studies of the heart of MINI-LEWE minature swine. 2: Atrioventricular and semilunar valves]. Litzke LF; Berg R Arch Exp Veterinarmed; 1977; 31(4):547-56. PubMed ID: 603355 [TBL] [Abstract][Full Text] [Related]
9. Pregnancy-induced remodeling of collagen architecture and content in the mitral valve. Pierlot CM; Lee JM; Amini R; Sacks MS; Wells SM Ann Biomed Eng; 2014 Oct; 42(10):2058-71. PubMed ID: 25103603 [TBL] [Abstract][Full Text] [Related]
10. Comparative mechanical, morphological, and microstructural characterization of porcine mitral and tricuspid leaflets and chordae tendineae. Pokutta-Paskaleva A; Sulejmani F; DelRocini M; Sun W Acta Biomater; 2019 Feb; 85():241-252. PubMed ID: 30579963 [TBL] [Abstract][Full Text] [Related]
11. Age-dependent changes of heart valves and heart size. Schenk KE; Heinze G Recent Adv Stud Cardiac Struct Metab; 1975; 10():617-24. PubMed ID: 1209008 [TBL] [Abstract][Full Text] [Related]
12. Quantification and comparison of the mechanical properties of four human cardiac valves. Pham T; Sulejmani F; Shin E; Wang D; Sun W Acta Biomater; 2017 May; 54():345-355. PubMed ID: 28336153 [TBL] [Abstract][Full Text] [Related]
13. Structural assessments in decellularized extracellular matrix of porcine semilunar heart valves: Evaluation of cell niches. Roderjan JG; de Noronha L; Stimamiglio MA; Correa A; Leitolis A; Bueno RRL; da Costa FDA Xenotransplantation; 2019 May; 26(3):e12503. PubMed ID: 30770594 [TBL] [Abstract][Full Text] [Related]
14. Extracellular matrix remodeling and cell phenotypic changes in dysplastic and hemodynamically altered semilunar human cardiac valves. Stephens EH; Shangkuan J; Kuo JJ; Carroll JL; Kearney DL; Carberry KE; Fraser CD; Grande-Allen KJ Cardiovasc Pathol; 2011; 20(5):e157-67. PubMed ID: 20817569 [TBL] [Abstract][Full Text] [Related]
15. Gross morphology and morphometry of native and decellularized heart valves of caprine: A comparative study. Sarma SAVM; Pathak D; Singh O; Uppal V; Mohindroo J; Choudhary RK Anat Histol Embryol; 2024 Jul; 53(4):e13075. PubMed ID: 38881030 [TBL] [Abstract][Full Text] [Related]
16. A detailed mechanical and microstructural analysis of ovine tricuspid valve leaflets. Meador WD; Mathur M; Sugerman GP; Jazwiec T; Malinowski M; Bersi MR; Timek TA; Rausch MK Acta Biomater; 2020 Jan; 102():100-113. PubMed ID: 31760220 [TBL] [Abstract][Full Text] [Related]
17. Pressure-induced microstructural changes in porcine tricuspid valve leaflets. Pant AD; Thomas VS; Black AL; Verba T; Lesicko JG; Amini R Acta Biomater; 2018 Feb; 67():248-258. PubMed ID: 29199067 [TBL] [Abstract][Full Text] [Related]
18. An investigation of the anisotropic mechanical properties and anatomical structure of porcine atrioventricular heart valves. Jett S; Laurence D; Kunkel R; Babu AR; Kramer K; Baumwart R; Towner R; Wu Y; Lee CH J Mech Behav Biomed Mater; 2018 Nov; 87():155-171. PubMed ID: 30071486 [TBL] [Abstract][Full Text] [Related]
19. Biaxial stress relaxation of semilunar heart valve leaflets during simulated collagen catabolism: Effects of collagenase concentration and equibiaxial strain state. Huang S; Huang HY Proc Inst Mech Eng H; 2015 Oct; 229(10):721-31. PubMed ID: 26405097 [TBL] [Abstract][Full Text] [Related]
20. Differential changes in the molecular stability of collagen from the pulmonary and aortic valves during the fetal-to-neonatal transition. Aldous IG; Lee JM; Wells SM Ann Biomed Eng; 2010 Sep; 38(9):3000-9. PubMed ID: 20473570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]