BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 26371301)

  • 1. Synthetic dosage lethality in the human metabolic network is highly predictive of tumor growth and cancer patient survival.
    Megchelenbrink W; Katzir R; Lu X; Ruppin E; Notebaart RA
    Proc Natl Acad Sci U S A; 2015 Sep; 112(39):12217-22. PubMed ID: 26371301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Introduction: Cancer Gene Networks.
    Clarke R
    Methods Mol Biol; 2017; 1513():1-9. PubMed ID: 27807826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An in-silico approach to predict and exploit synthetic lethality in cancer metabolism.
    Apaolaza I; San José-Eneriz E; Tobalina L; Miranda E; Garate L; Agirre X; Prósper F; Planes FJ
    Nat Commun; 2017 Sep; 8(1):459. PubMed ID: 28878380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality.
    Jerby-Arnon L; Pfetzer N; Waldman YY; McGarry L; James D; Shanks E; Seashore-Ludlow B; Weinstock A; Geiger T; Clemons PA; Gottlieb E; Ruppin E
    Cell; 2014 Aug; 158(5):1199-1209. PubMed ID: 25171417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrative analysis of large-scale loss-of-function screens identifies robust cancer-associated genetic interactions.
    Lord CJ; Quinn N; Ryan CJ
    Elife; 2020 May; 9():. PubMed ID: 32463358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Building high-resolution synthetic lethal networks: a 'Google map' of the cancer cell.
    Paul JM; Templeton SD; Baharani A; Freywald A; Vizeacoumar FJ
    Trends Mol Med; 2014 Dec; 20(12):704-15. PubMed ID: 25446836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring synthetic lethal interactions from mutual exclusivity of genetic events in cancer.
    Srihari S; Singla J; Wong L; Ragan MA
    Biol Direct; 2015 Oct; 10():57. PubMed ID: 26427375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systems biology-guided identification of synthetic lethal gene pairs and its potential use to discover antibiotic combinations.
    Aziz RK; Monk JM; Lewis RM; In Loh S; Mishra A; Abhay Nagle A; Satyanarayana C; Dhakshinamoorthy S; Luche M; Kitchen DB; Andrews KA; Fong NL; Li HJ; Palsson BO; Charusanti P
    Sci Rep; 2015 Nov; 5():16025. PubMed ID: 26531810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antagonistic functional duality of cancer genes.
    Stepanenko AA; Vassetzky YS; Kavsan VM
    Gene; 2013 Oct; 529(2):199-207. PubMed ID: 23933273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From oncogene to network addiction: the new frontier of cancer genomics and therapeutics.
    Tonon G
    Future Oncol; 2008 Aug; 4(4):569-77. PubMed ID: 18684067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seed-effect modeling improves the consistency of genome-wide loss-of-function screens and identifies synthetic lethal vulnerabilities in cancer cells.
    Jaiswal A; Peddinti G; Akimov Y; Wennerberg K; Kuznetsov S; Tang J; Aittokallio T
    Genome Med; 2017 Jun; 9(1):51. PubMed ID: 28569207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. System-scale network modeling of cancer using EPoC.
    Abenius T; Jörnsten R; Kling T; Schmidt L; Sánchez J; Nelander S
    Adv Exp Med Biol; 2012; 736():617-43. PubMed ID: 22161356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction of a generic metabolic network model of cancer cells.
    Hadi M; Marashi SA
    Mol Biosyst; 2014 Nov; 10(11):3014-21. PubMed ID: 25196995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrative modeling of multi-omics data to identify cancer drivers and infer patient-specific gene activity.
    Pavel AB; Sonkin D; Reddy A
    BMC Syst Biol; 2016 Feb; 10():16. PubMed ID: 26864072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Connectivity Homology Enables Inter-Species Network Models of Synthetic Lethality.
    Jacunski A; Dixon SJ; Tatonetti NP
    PLoS Comput Biol; 2015 Oct; 11(10):e1004506. PubMed ID: 26451775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-omic measurement of mutually exclusive loss-of-function enriches for candidate synthetic lethal gene pairs.
    Wappett M; Dulak A; Yang ZR; Al-Watban A; Bradford JR; Dry JR
    BMC Genomics; 2016 Jan; 17():65. PubMed ID: 26781748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in the integration of transcriptional regulatory information into genome-scale metabolic models.
    Vivek-Ananth RP; Samal A
    Biosystems; 2016 Sep; 147():1-10. PubMed ID: 27287878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MetaNET--a web-accessible interactive platform for biological metabolic network analysis.
    Narang P; Khan S; Hemrom AJ; ; Lynn AM
    BMC Syst Biol; 2014; 8():130. PubMed ID: 25779921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A network-based approach to integrate nutrient microenvironment in the prediction of synthetic lethality in cancer metabolism.
    Apaolaza I; San José-Enériz E; Valcarcel LV; Agirre X; Prosper F; Planes FJ
    PLoS Comput Biol; 2022 Mar; 18(3):e1009395. PubMed ID: 35286311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-scale metabolic network analysis and drug targeting of multi-drug resistant pathogen Acinetobacter baumannii AYE.
    Kim HU; Kim TY; Lee SY
    Mol Biosyst; 2010 Feb; 6(2):339-48. PubMed ID: 20094653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.