BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 26371312)

  • 1. Role of water and steric constraints in the kinetics of cavity-ligand unbinding.
    Tiwary P; Mondal J; Morrone JA; Berne BJ
    Proc Natl Acad Sci U S A; 2015 Sep; 112(39):12015-9. PubMed ID: 26371312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variational implicit-solvent predictions of the dry-wet transition pathways for ligand-receptor binding and unbinding kinetics.
    Zhou S; Weiß RG; Cheng LT; Dzubiella J; McCammon JA; Li B
    Proc Natl Acad Sci U S A; 2019 Jul; 116(30):14989-14994. PubMed ID: 31270236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unbiased Molecular Dynamics of 11 min Timescale Drug Unbinding Reveals Transition State Stabilizing Interactions.
    Lotz SD; Dickson A
    J Am Chem Soc; 2018 Jan; 140(2):618-628. PubMed ID: 29303257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoding the Role of Water Dynamics in Ligand-Protein Unbinding: CRF1R as a Test Case.
    Bortolato A; Deflorian F; Weiss DR; Mason JS
    J Chem Inf Model; 2015 Sep; 55(9):1857-66. PubMed ID: 26335976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Dynamics in Mixed Solvents Reveals Protein-Ligand Interactions, Improves Docking, and Allows Accurate Binding Free Energy Predictions.
    Arcon JP; Defelipe LA; Modenutti CP; López ED; Alvarez-Garcia D; Barril X; Turjanski AG; Martí MA
    J Chem Inf Model; 2017 Apr; 57(4):846-863. PubMed ID: 28318252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dewetting-controlled binding of ligands to hydrophobic pockets.
    Setny P; Wang Z; Cheng LT; Li B; McCammon JA; Dzubiella J
    Phys Rev Lett; 2009 Oct; 103(18):187801. PubMed ID: 19905832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How wet should be the reaction coordinate for ligand unbinding?
    Tiwary P; Berne BJ
    J Chem Phys; 2016 Aug; 145(5):054113. PubMed ID: 27497545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can One Trust Kinetic and Thermodynamic Observables from Biased Metadynamics Simulations?: Detailed Quantitative Benchmarks on Millimolar Drug Fragment Dissociation.
    Pramanik D; Smith Z; Kells A; Tiwary P
    J Phys Chem B; 2019 May; 123(17):3672-3678. PubMed ID: 30974941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of protein-ligand unbinding: Predicting pathways, rates, and rate-limiting steps.
    Tiwary P; Limongelli V; Salvalaglio M; Parrinello M
    Proc Natl Acad Sci U S A; 2015 Feb; 112(5):E386-91. PubMed ID: 25605901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined Free-Energy Calculation and Machine Learning Methods for Understanding Ligand Unbinding Kinetics.
    Badaoui M; Buigues PJ; Berta D; Mandana GM; Gu H; Földes T; Dickson CJ; Hornak V; Kato M; Molteni C; Parsons S; Rosta E
    J Chem Theory Comput; 2022 Apr; 18(4):2543-2555. PubMed ID: 35195418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unbinding Kinetics of a p38 MAP Kinase Type II Inhibitor from Metadynamics Simulations.
    Casasnovas R; Limongelli V; Tiwary P; Carloni P; Parrinello M
    J Am Chem Soc; 2017 Apr; 139(13):4780-4788. PubMed ID: 28290199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attempting Well-Tempered Funnel Metadynamics Simulations for the Evaluation of the Binding Kinetics of Methionine Aminopeptidase-II Inhibitors.
    Rubina ; Moin ST
    J Chem Inf Model; 2023 Dec; 63(24):7729-7743. PubMed ID: 38059911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent fluctuations in hydrophobic cavity-ligand binding kinetics.
    Setny P; Baron R; Michael Kekenes-Huskey P; McCammon JA; Dzubiella J
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1197-202. PubMed ID: 23297241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent effects on host-guest residence time and kinetics: further insights from metadynamics simulation of Toussaintine-A unbiding from chitosan nanoparticle.
    Shadrack DM; Kiruri LW; Swai H; Nyandoro SS
    J Mol Model; 2021 Apr; 27(5):127. PubMed ID: 33851283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enthalpically-driven ligand recognition and cavity solvation of bovine odorant binding protein.
    Gómez-Velasco H; Rojo-Domínguez A; García-Hernández E
    Biophys Chem; 2020 Feb; 257():106315. PubMed ID: 31841862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of Ligand Binding Through Advanced Computational Approaches: A Review.
    Dickson A; Tiwary P; Vashisth H
    Curr Top Med Chem; 2017; 17(23):2626-2641. PubMed ID: 28413946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Sampling Simulations of Ligand Unbinding Kinetics Controlled by Protein Conformational Changes.
    Zhou Y; Zou R; Kuang G; Långström B; Halldin C; Ågren H; Tu Y
    J Chem Inf Model; 2019 Sep; 59(9):3910-3918. PubMed ID: 31454236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerating Rare Dissociative Processes in Biomolecules Using Selectively Scaled MD Simulations.
    Deb I; Frank AT
    J Chem Theory Comput; 2019 Nov; 15(11):5817-5828. PubMed ID: 31509413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The prediction of protein-ligand unbinding for modern drug discovery.
    Zhang Q; Zhao N; Meng X; Yu F; Yao X; Liu H
    Expert Opin Drug Discov; 2022 Feb; 17(2):191-205. PubMed ID: 34731059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing models of force-dependent unbinding rates via infrequent metadynamics.
    Peña Ccoa WJ; Hocky GM
    J Chem Phys; 2022 Mar; 156(12):125102. PubMed ID: 35364872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.