These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26371675)

  • 1. First-Principles Calculation of the Real-Space Order Parameter and Condensation Energy Density in Phonon-Mediated Superconductors.
    Linscheid A; Sanna A; Floris A; Gross EK
    Phys Rev Lett; 2015 Aug; 115(9):097002. PubMed ID: 26371675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonempirical Calculation of Superconducting Transition Temperatures in Light-Element Superconductors.
    Arita R; Koretsune T; Sakai S; Akashi R; Nomura Y; Sano W
    Adv Mater; 2017 Jul; 29(25):. PubMed ID: 28060417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-principles prediction of doped graphane as a high-temperature electron-phonon superconductor.
    Savini G; Ferrari AC; Giustino F
    Phys Rev Lett; 2010 Jul; 105(3):037002. PubMed ID: 20867792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ epitaxial MgB2 thin films for superconducting electronics.
    Zeng X; Pogrebnyakov AV; Kotcharov A; Jones JE; Xi XX; Lysczek EM; Redwing JM; Xu S; Li Q; Lettieri J; Schlom DG; Tian W; Pan X; Liu ZK
    Nat Mater; 2002 Sep; 1(1):35-8. PubMed ID: 12618845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct evaluation of the isotope effect within the framework of density functional theory for superconductors.
    Lüders M; Cudazzo P; Profeta G; Continenza A; Massidda S; Sanna A; Gross EKU
    J Phys Condens Matter; 2019 Aug; 31(33):334001. PubMed ID: 31071706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superconducting properties of MgB2 from first principles.
    Floris A; Profeta G; Lathiotakis NN; Lüders M; Marques MA; Franchini C; Gross EK; Continenza A; Massidda S
    Phys Rev Lett; 2005 Jan; 94(3):037004. PubMed ID: 15698310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-principles prediction of phonon-mediated superconductivity in XBC (X = Mg, Ca, Sr, Ba).
    Haque E; Hossain MA; Stampfl C
    Phys Chem Chem Phys; 2019 Apr; 21(17):8767-8773. PubMed ID: 30968874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phonon dispersion and electron-phonon coupling in MgB2 and AlB2.
    Bohnen KP; Heid R; Renker B
    Phys Rev Lett; 2001 Jun; 86(25):5771-4. PubMed ID: 11415354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of stoichiometry in superconducting Nb
    Gala F; De Marzi G; Muzzi L; Zollo G
    Phys Chem Chem Phys; 2016 Dec; 18(48):32840-32846. PubMed ID: 27883143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phonon softening in nanostructured phonon-mediated superconductors (review).
    Prischepa SL; Kushnir VN
    J Phys Condens Matter; 2023 May; 35(31):. PubMed ID: 36947886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. THz/Far infrared synchrotron observations of superlattice frequencies in MgB
    Alarco JA; Gupta B; Shahbazi M; Appadoo D; Mackinnon IDR
    Phys Chem Chem Phys; 2021 Oct; 23(41):23922-23932. PubMed ID: 34652364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled vaporization of the superconducting condensate in cuprate superconductors by femtosecond photoexcitation.
    Kusar P; Kabanov VV; Demsar J; Mertelj T; Sugai S; Mihailovic D
    Phys Rev Lett; 2008 Nov; 101(22):227001. PubMed ID: 19113512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hard BN Clathrate Superconductors.
    Li X; Yong X; Wu M; Lu S; Liu H; Meng S; Tse JS; Li Y
    J Phys Chem Lett; 2019 May; 10(10):2554-2560. PubMed ID: 31046286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron-phonon coupling reflecting dynamic charge inhomogeneity in copper oxide superconductors.
    Reznik D; Pintschovius L; Ito M; Iikubo S; Sato M; Goka H; Fujita M; Yamada K; Gu GD; Tranquada JM
    Nature; 2006 Apr; 440(7088):1170-3. PubMed ID: 16641991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning the Electron-Phonon and Superconducting Coupling in InPb Bimetallic Alloys.
    Gandhi AC; Wu SY
    Inorg Chem; 2018 Aug; 57(15):9306-9315. PubMed ID: 29995396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiband superconductivity in Pb, H under pressure and CaBeSi from ab initio calculations.
    Bersier C; Floris A; Cudazzo P; Profeta G; Sanna A; Bernardini F; Monni M; Pittalis S; Sharma S; Glawe H; Continenza A; Massidda S; Gross EK
    J Phys Condens Matter; 2009 Apr; 21(16):164209. PubMed ID: 21825389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The origin of multiple superconducting gaps in MgB2.
    Souma S; Machida Y; Sato T; Takahashi T; Matsui H; Wang SC; Ding H; Kaminski A; Campuzano JC; Sasaki S; Kadowaki K
    Nature; 2003 May; 423(6935):65-7. PubMed ID: 12721624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining Eliashberg Theory with Density Functional Theory for the Accurate Prediction of Superconducting Transition Temperatures and Gap Functions.
    Sanna A; Pellegrini C; Gross EKU
    Phys Rev Lett; 2020 Jul; 125(5):057001. PubMed ID: 32794891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure effects on the electronic structure and superconducting critical temperature of Li2B2.
    Martínez-Guerra E; Ortíz-Chi F; Curtarolo S; de Coss R
    J Phys Condens Matter; 2014 Mar; 26(11):115701. PubMed ID: 24589928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of density-functional theory for a plasmon-assisted superconducting state: application to lithium under high pressures.
    Akashi R; Arita R
    Phys Rev Lett; 2013 Aug; 111(5):057006. PubMed ID: 23952436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.