These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26371685)

  • 1. Negative Interfacial Tension in Phase-Separated Active Brownian Particles.
    Bialké J; Siebert JT; Löwen H; Speck T
    Phys Rev Lett; 2015 Aug; 115(9):098301. PubMed ID: 26371685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-equilibrium surface tension of the vapour-liquid interface of active Lennard-Jones particles.
    Paliwal S; Prymidis V; Filion L; Dijkstra M
    J Chem Phys; 2017 Aug; 147(8):084902. PubMed ID: 28863522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleation pathway and kinetics of phase-separating active Brownian particles.
    Richard D; Löwen H; Speck T
    Soft Matter; 2016 Jun; 12(24):5257-64. PubMed ID: 27126952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles.
    Buttinoni I; Bialké J; Kümmel F; Löwen H; Bechinger C; Speck T
    Phys Rev Lett; 2013 Jun; 110(23):238301. PubMed ID: 25167534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic structure perspective for MIPS interfaces in two-dimensional systems of active Brownian particles.
    Chacón E; Alarcón F; Ramírez J; Tarazona P; Valeriani C
    Soft Matter; 2022 Mar; 18(13):2646-2653. PubMed ID: 35302119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity-induced phase separation and self-assembly in mixtures of active and passive particles.
    Stenhammar J; Wittkowski R; Marenduzzo D; Cates ME
    Phys Rev Lett; 2015 Jan; 114(1):018301. PubMed ID: 25615509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-negative Interfacial Tension in Phase-Separated Active Brownian Particles.
    Hermann S; de Las Heras D; Schmidt M
    Phys Rev Lett; 2019 Dec; 123(26):268002. PubMed ID: 31951431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Curvature-dependent tension and tangential flows at the interface of motility-induced phases.
    Patch A; Sussman DM; Yllanes D; Marchetti MC
    Soft Matter; 2018 Sep; 14(36):7435-7445. PubMed ID: 30152493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase separation in binary mixtures of active and passive particles.
    Dolai P; Simha A; Mishra S
    Soft Matter; 2018 Jul; 14(29):6137-6145. PubMed ID: 29999083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-body correlations and conditional forces in suspensions of active hard disks.
    Härtel A; Richard D; Speck T
    Phys Rev E; 2018 Jan; 97(1-1):012606. PubMed ID: 29448434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applicability of effective pair potentials for active Brownian particles.
    Rein M; Speck T
    Eur Phys J E Soft Matter; 2016 Sep; 39(9):84. PubMed ID: 27628695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motility-Induced Microphase and Macrophase Separation in a Two-Dimensional Active Brownian Particle System.
    Caporusso CB; Digregorio P; Levis D; Cugliandolo LF; Gonnella G
    Phys Rev Lett; 2020 Oct; 125(17):178004. PubMed ID: 33156654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and dynamics of a phase-separating active colloidal fluid.
    Redner GS; Hagan MF; Baskaran A
    Phys Rev Lett; 2013 Feb; 110(5):055701. PubMed ID: 23414035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Additivity, density fluctuations, and nonequilibrium thermodynamics for active Brownian particles.
    Chakraborti S; Mishra S; Pradhan P
    Phys Rev E; 2016 May; 93(5):052606. PubMed ID: 27300950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuum theory of phase separation kinetics for active Brownian particles.
    Stenhammar J; Tiribocchi A; Allen RJ; Marenduzzo D; Cates ME
    Phys Rev Lett; 2013 Oct; 111(14):145702. PubMed ID: 24138255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphology of clusters of attractive dry and wet self-propelled spherical particle suspensions.
    Alarcón F; Valeriani C; Pagonabarraga I
    Soft Matter; 2017 Jan; 13(4):814-826. PubMed ID: 28066850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase behavior and surface tension of soft active Brownian particles.
    Lauersdorf N; Kolb T; Moradi M; Nazockdast E; Klotsa D
    Soft Matter; 2021 Jul; 17(26):6337-6351. PubMed ID: 34128024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase Separation and Multibody Effects in Three-Dimensional Active Brownian Particles.
    Turci F; Wilding NB
    Phys Rev Lett; 2021 Jan; 126(3):038002. PubMed ID: 33543975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Swim pressure: stress generation in active matter.
    Takatori SC; Yan W; Brady JF
    Phys Rev Lett; 2014 Jul; 113(2):028103. PubMed ID: 25062240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase coexistence of active Brownian particles.
    Hermann S; Krinninger P; de Las Heras D; Schmidt M
    Phys Rev E; 2019 Nov; 100(5-1):052604. PubMed ID: 31869869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.