BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 26371748)

  • 1. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations.
    Sun T; Gauthier SY; Campbell RL; Davies PL
    J Phys Chem B; 2015 Oct; 119(40):12808-15. PubMed ID: 26371748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal waters on the nine polyproline type II helical bundle springtail antifreeze protein from Granisotoma rainieri match the ice lattice.
    Scholl CL; Tsuda S; Graham LA; Davies PL
    FEBS J; 2021 Jul; 288(14):4332-4347. PubMed ID: 33460499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of an insect antifreeze protein reveals ordered waters on the ice-binding surface.
    Ye Q; Eves R; Campbell RL; Davies PL
    Biochem J; 2020 Sep; 477(17):3271-3286. PubMed ID: 32794579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimum Number of Anchored Clathrate Water and Its Instantaneous Fluctuations Dictate Ice Plane Recognition Specificities of Insect Antifreeze Protein.
    Chakraborty S; Jana B
    J Phys Chem B; 2018 Mar; 122(12):3056-3067. PubMed ID: 29510055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ordered hydration layer mediated ice adsorption of a globular antifreeze protein: mechanistic insight.
    Chakraborty S; Jana B
    Phys Chem Chem Phys; 2019 Sep; 21(35):19298-19310. PubMed ID: 31451813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences.
    Hanada Y; Nishimiya Y; Miura A; Tsuda S; Kondo H
    FEBS J; 2014 Aug; 281(16):3576-90. PubMed ID: 24938370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydration behavior at the ice-binding surface of the Tenebrio molitor antifreeze protein.
    Midya US; Bandyopadhyay S
    J Phys Chem B; 2014 May; 118(18):4743-52. PubMed ID: 24725212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for the binding of a globular antifreeze protein to ice.
    Jia Z; DeLuca CI; Chao H; Davies PL
    Nature; 1996 Nov; 384(6606):285-8. PubMed ID: 8918883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ice-binding site of surface-bound type III antifreeze protein partially decoupled from water.
    Verreault D; Alamdari S; Roeters SJ; Pandey R; Pfaendtner J; Weidner T
    Phys Chem Chem Phys; 2018 Oct; 20(42):26926-26933. PubMed ID: 30260363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium-Binding Generates the Semi-Clathrate Waters on a Type II Antifreeze Protein to Adsorb onto an Ice Crystal Surface.
    Arai T; Nishimiya Y; Ohyama Y; Kondo H; Tsuda S
    Biomolecules; 2019 Apr; 9(5):. PubMed ID: 31035615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermediate activity of midge antifreeze protein is due to a tyrosine-rich ice-binding site and atypical ice plane affinity.
    Basu K; Wasserman SS; Jeronimo PS; Graham LA; Davies PL
    FEBS J; 2016 Apr; 283(8):1504-15. PubMed ID: 26896764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Study of Differences between Antifreeze Activity of Type-III Antifreeze Protein from Ocean Pout and Its Mutant.
    Kumari S; Muthachikavil AV; Tiwari JK; Punnathanam SN
    Langmuir; 2020 Mar; 36(9):2439-2448. PubMed ID: 32069407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site.
    Middleton AJ; Marshall CB; Faucher F; Bar-Dolev M; Braslavsky I; Campbell RL; Walker VK; Davies PL
    J Mol Biol; 2012 Mar; 416(5):713-24. PubMed ID: 22306740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Factors of Ice Growth Inhibition for Hyperactive and Globular Antifreeze Proteins: Insights from Molecular Dynamics Simulation.
    Pal P; Aich R; Chakraborty S; Jana B
    Langmuir; 2022 Dec; 38(49):15132-15144. PubMed ID: 36450094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the ice-binding surface on a type III antifreeze protein with a "flatness function" algorithm.
    Yang DS; Hon WC; Bubanko S; Xue Y; Seetharaman J; Hew CL; Sicheri F
    Biophys J; 1998 May; 74(5):2142-51. PubMed ID: 9591641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ice surface reconstruction as antifreeze protein-induced morphological modification mechanism.
    Strom CS; Liu XY; Jia Z
    J Am Chem Soc; 2005 Jan; 127(1):428-40. PubMed ID: 15631494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering a naturally inactive isoform of type III antifreeze protein into one that can stop the growth of ice.
    Garnham CP; Nishimiya Y; Tsuda S; Davies PL
    FEBS Lett; 2012 Nov; 586(21):3876-81. PubMed ID: 23017208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Insight into the Adsorption of Spruce Budworm Antifreeze Protein to an Ice Surface: A Clathrate-Mediated Recognition Mechanism.
    Chakraborty S; Jana B
    Langmuir; 2017 Jul; 33(28):7202-7214. PubMed ID: 28650167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of microbial antifreeze protein with intermediate activity suggests that a bound-water network is essential for hyperactivity.
    Khan NMU; Arai T; Tsuda S; Kondo H
    Sci Rep; 2021 Mar; 11(1):5971. PubMed ID: 33727595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anchored clathrate waters bind antifreeze proteins to ice.
    Garnham CP; Campbell RL; Davies PL
    Proc Natl Acad Sci U S A; 2011 May; 108(18):7363-7. PubMed ID: 21482800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.