These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26372044)

  • 1. Reconstruction of Multiple Facial Nerve Branches Using Skeletal Muscle-Derived Multipotent Stem Cell Sheet-Pellet Transplantation.
    Saito K; Tamaki T; Hirata M; Hashimoto H; Nakazato K; Nakajima N; Kazuno A; Sakai A; Iida M; Okami K
    PLoS One; 2015; 10(9):e0138371. PubMed ID: 26372044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D reconstitution of nerve-blood vessel networks using skeletal muscle-derived multipotent stem cell sheet pellets.
    Tamaki T; Soeda S; Hashimoto H; Saito K; Sakai A; Nakajima N; Masuda M; Fukunishi N; Uchiyama Y; Terachi T; Mochida J
    Regen Med; 2013 Jul; 8(4):437-51. PubMed ID: 23826698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstitution of the complete rupture in musculotendinous junction using skeletal muscle-derived multipotent stem cell sheet-pellets as a "bio-bond".
    Hashimoto H; Tamaki T; Hirata M; Uchiyama Y; Sato M; Mochida J
    PeerJ; 2016; 4():e2231. PubMed ID: 27547541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstitution of experimental neurogenic bladder dysfunction using skeletal muscle-derived multipotent stem cells.
    Nitta M; Tamaki T; Tono K; Okada Y; Masuda M; Akatsuka A; Hoshi A; Usui Y; Terachi T
    Transplantation; 2010 May; 89(9):1043-9. PubMed ID: 20150836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preferential and comprehensive reconstitution of severely damaged sciatic nerve using murine skeletal muscle-derived multipotent stem cells.
    Tamaki T; Hirata M; Soeda S; Nakajima N; Saito K; Nakazato K; Okada Y; Hashimoto H; Uchiyama Y; Mochida J
    PLoS One; 2014; 9(3):e91257. PubMed ID: 24614849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction of radical prostatectomy-induced urethral damage using skeletal muscle-derived multipotent stem cells.
    Hoshi A; Tamaki T; Tono K; Okada Y; Akatsuka A; Usui Y; Terachi T
    Transplantation; 2008 Jun; 85(11):1617-24. PubMed ID: 18551069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purified Human Skeletal Muscle-Derived Stem Cells Enhance the Repair and Regeneration in the Damaged Urethra.
    Nakajima N; Tamaki T; Hirata M; Soeda S; Nitta M; Hoshi A; Terachi T
    Transplantation; 2017 Oct; 101(10):2312-2320. PubMed ID: 28027190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clonal multipotency of skeletal muscle-derived stem cells between mesodermal and ectodermal lineage.
    Tamaki T; Okada Y; Uchiyama Y; Tono K; Masuda M; Wada M; Hoshi A; Ishikawa T; Akatsuka A
    Stem Cells; 2007 Sep; 25(9):2283-90. PubMed ID: 17588936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Long-Gap Peripheral Nerve Injury Therapy Using Human Skeletal Muscle-Derived Stem Cells (Sk-SCs): An Achievement of Significant Morphological, Numerical and Functional Recovery.
    Tamaki T; Hirata M; Nakajima N; Saito K; Hashimoto H; Soeda S; Uchiyama Y; Watanabe M
    PLoS One; 2016; 11(11):e0166639. PubMed ID: 27846318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional recovery of damaged skeletal muscle through synchronized vasculogenesis, myogenesis, and neurogenesis by muscle-derived stem cells.
    Tamaki T; Uchiyama Y; Okada Y; Ishikawa T; Sato M; Akatsuka A; Asahara T
    Circulation; 2005 Nov; 112(18):2857-66. PubMed ID: 16246946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differentiation Capacity of Porcine Skeletal Muscle-Derived Stem Cells as Intermediate Species between Mice and Humans.
    Tamaki T; Natsume T; Katoh A; Nakajima N; Saito K; Fukuzawa T; Otake M; Enya S; Kangawa A; Imai T; Tamaki M; Uchiyama Y
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination of hypoglossal-facial nerve surgical reconstruction and neurotrophin-3 gene therapy for facial palsy.
    Wan H; Zhang L; Blanchard S; Bigou S; Bohl D; Wang C; Liu S
    J Neurosurg; 2013 Sep; 119(3):739-50. PubMed ID: 23581595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Therapeutic effect of human umbilical cord multipotent mesenchymal stromal cells in a rat model of stroke.
    Liao W; Xie J; Zhong J; Liu Y; Du L; Zhou B; Xu J; Liu P; Yang S; Wang J; Han Z; Han ZC
    Transplantation; 2009 Feb; 87(3):350-9. PubMed ID: 19202439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchronized reconstitution of muscle fibers, peripheral nerves and blood vessels by murine skeletal muscle-derived CD34(-)/45 (-) cells.
    Tamaki T; Okada Y; Uchiyama Y; Tono K; Masuda M; Wada M; Hoshi A; Akatsuka A
    Histochem Cell Biol; 2007 Oct; 128(4):349-60. PubMed ID: 17762938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone marrow-derived mesenchymal stem cell transplantation does not improve quality of muscle reinnervation or recovery of motor function after facial nerve transection in rats.
    Grosheva M; Guntinas-Lichius O; Arnhold S; Skouras E; Kuerten S; Streppel M; Angelova SK; Wewetzer K; Radtke C; Dunlop SA; Angelov DN
    Biol Chem; 2008 Jul; 389(7):873-88. PubMed ID: 18627308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transplantation of multipotent cells extracted from adult skeletal muscles into the subventricular zone of adult rats.
    Mignon L; Vourc'h P; Romero-Ramos M; Osztermann P; Young HE; Lucas PA; Chesselet MF
    J Comp Neurol; 2005 Oct; 491(2):96-108. PubMed ID: 16127692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Therapeutic isolation and expansion of human skeletal muscle-derived stem cells for the use of muscle-nerve-blood vessel reconstitution.
    Tamaki T; Uchiyama Y; Hirata M; Hashimoto H; Nakajima N; Saito K; Terachi T; Mochida J
    Front Physiol; 2015; 6():165. PubMed ID: 26082721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regeneration of Transected Recurrent Laryngeal Nerve Using Hybrid-Transplantation of Skeletal Muscle-Derived Stem Cells and Bioabsorbable Scaffold.
    Kazuno A; Maki D; Yamato I; Nakajima N; Seta H; Soeda S; Ozawa S; Uchiyama Y; Tamaki T
    J Clin Med; 2018 Sep; 7(9):. PubMed ID: 30213120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracranial transplantation of monocyte-derived multipotential cells enhances recovery after ischemic stroke in rats.
    Hattori H; Suzuki S; Okazaki Y; Suzuki N; Kuwana M
    J Neurosci Res; 2012 Feb; 90(2):479-88. PubMed ID: 22057655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined use of decellularized allogeneic artery conduits with autologous transdifferentiated adipose-derived stem cells for facial nerve regeneration in rats.
    Sun F; Zhou K; Mi WJ; Qiu JH
    Biomaterials; 2011 Nov; 32(32):8118-28. PubMed ID: 21816463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.