These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 26372080)

  • 1. Metabolic fate of 3α,5-cycloandrostanes in the endogenous lactonization pathway of Aspergillus tamarii KITA.
    Hunter AC; Patel S; Dedi C; Dodd HT; Bryce RA
    Phytochemistry; 2015 Nov; 119():19-25. PubMed ID: 26372080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformation of some 3alpha-substituted steroids by Aspergillus tamarii KITA reveals stereochemical restriction of steroid binding orientation in the minor hydroxylation pathway.
    Christy Hunter A; Khuenl-Brady H; Barrett P; Dodd HT; Dedi C
    J Steroid Biochem Mol Biol; 2010 Feb; 118(3):171-6. PubMed ID: 20026270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation of a series of saturated isomeric steroidal diols by Aspergillus tamarii KITA reveals a precise stereochemical requirement for entrance into the lactonization pathway.
    Hunter AC; Collins C; Dodd HT; Dedi C; Koussoroplis SJ
    J Steroid Biochem Mol Biol; 2010 Nov; 122(5):352-8. PubMed ID: 20832471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct metabolic handling of 3beta-hydroxy-17a-oxa-D-homo-5alpha-androstan-17-one by the filamentous fungus Aspergillus tamarii KITA: Evidence in support of steroid/hydroxylase binding hypothesis.
    Hunter AC; Bergin-Simpson H
    Biochim Biophys Acta; 2007 Sep; 1771(9):1254-61. PubMed ID: 17692565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fate of novel Quasi reverse steroidal substrates by Aspergillus tamarii KITA: bypass of lactonisation and an exclusive role for the minor hydroxylation pathway.
    Hunter AC; Kennedy S; Clabby SJ; Elsom J
    Biochim Biophys Acta; 2005 May; 1734(2):190-7. PubMed ID: 15904875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ring-B functionalized androst-4-en-3-ones and ring-C substituted pregn-4-en-3-ones undergo differential transformation in Aspergillus tamarii KITA: ring-A transformation with all C-6 substituted steroids and ring-D transformation with C-11 substituents.
    Hunter AC; Elsom J; Ross L; Barrett R
    Biochim Biophys Acta; 2006 Mar; 1761(3):360-6. PubMed ID: 16574481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexibility of the endogenous progesterone lactonisation pathway in Aspergillus tamarii KITA: transformation of a series of cortical steroid analogues.
    Hunter AC; Carragher NE
    J Steroid Biochem Mol Biol; 2003 Dec; 87(4-5):301-8. PubMed ID: 14698211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation of 5-ene steroids by the fungus Aspergillus tamarii KITA: mixed molecular fate in lactonization and hydroxylation pathways with identification of a putative 3beta-hydroxy-steroid dehydrogenase/Delta5-Delta4 isomerase pathway.
    Hunter AC; Coyle E; Morse F; Dedi C; Dodd HT; Koussoroplis SJ
    Biochim Biophys Acta; 2009 Feb; 1791(2):110-7. PubMed ID: 19136076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Baeyer-Villiger oxidation of progesterone by Aspergillus sojae PTCC 5196.
    Javid M; Nickavar B; Vahidi H; Faramarzi MA
    Steroids; 2018 Dec; 140():52-57. PubMed ID: 30055193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic fate of pregnene-based steroids in the lactonization pathway of multifunctional strain Penicillium lanosocoeruleum.
    Świzdor A; Panek A; Ostrowska P
    Microb Cell Fact; 2018 Jun; 17(1):100. PubMed ID: 29940969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial Baeyer-Villiger oxidation of 5α-steroids using Beauveria bassiana. A stereochemical requirement for the 11α-hydroxylation and the lactonization pathway.
    Świzdor A; Panek A; Milecka-Tronina N
    Steroids; 2014 Apr; 82():44-52. PubMed ID: 24486796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotransformation of dehydro-epi-androsterone by Aspergillus parasiticus: Metabolic evidences of BVMO activity.
    Mascotti ML; Palazzolo MA; Bisogno FR; Kurina-Sanz M
    Steroids; 2016 May; 109():44-9. PubMed ID: 27025973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxylation of steroids by Fusarium oxysporum, Exophiala jeanselmei and Ceratocystis paradoxa.
    Peart PC; McCook KP; Russell FA; Reynolds WF; Reese PB
    Steroids; 2011 Nov; 76(12):1317-30. PubMed ID: 21763336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial Modifications of Androstane and Androstene Steroids by
    Panek A; Łyczko P; Świzdor A
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32942593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of 17 beta-hydroxy-2alpha, 3alpha-cyclopropano-5alpha-androstane in the rabbit.
    Templeton JF; Kim RS
    Steroids; 1976 May; 27(5):581-93. PubMed ID: 941178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbiological hydroxylation of steroids. VI. Hydroxylation of simple mono- and di-oxygenated 5 -androstanes and of 3-oxoestranes with the fungus Aspergillus ochraceus.
    Bell AM; Browne JW; Denny WA; Jones ER; Kasal JA; Meakins GD
    J Chem Soc Perkin 1; 1972; 23():2930-6. PubMed ID: 4675916
    [No Abstract]   [Full Text] [Related]  

  • 17. Baeyer-Villiger oxidation of some C(19) steroids by Penicillium lanosocoeruleum.
    Świzdor A
    Molecules; 2013 Nov; 18(11):13812-22. PubMed ID: 24213656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 11 alpha-hydroxylation of steroids by spores of Aspergillus ochraceus.
    Sehgal SN; Singh K; Vezina C
    Can J Microbiol; 1968 May; 14(5):529-32. PubMed ID: 5661060
    [No Abstract]   [Full Text] [Related]  

  • 19. [Bioconversion of C19- and C21-steroids with parent and mutant strains of Curvularia lunata].
    Kollerov VV; Shutov AA; Fokina VV; Sukhodol'skaia GV; Gulevskaia SA; Donova MV
    Prikl Biokhim Mikrobiol; 2010; 46(2):212-20. PubMed ID: 20391766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An unusual ring--a opening and other reactions in steroid transformation by the thermophilic fungus Myceliophthora thermophila.
    Hunter AC; Watts KR; Dedi C; Dodd HT
    J Steroid Biochem Mol Biol; 2009 Sep; 116(3-5):171-7. PubMed ID: 19482085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.