BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 26372090)

  • 1. Zebrafish neurobehavioral phenomics for aquatic neuropharmacology and toxicology research.
    Kalueff AV; Echevarria DJ; Homechaudhuri S; Stewart AM; Collier AD; Kaluyeva AA; Li S; Liu Y; Chen P; Wang J; Yang L; Mitra A; Pal S; Chaudhuri A; Roy A; Biswas M; Roy D; Podder A; Poudel MK; Katare DP; Mani RJ; Kyzar EJ; Gaikwad S; Nguyen M; Song C;
    Aquat Toxicol; 2016 Jan; 170():297-309. PubMed ID: 26372090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of intraspecies variation in fish neurobehavioral and neuropharmacological phenotypes in aquatic models.
    Demin KA; Lakstygal AM; Alekseeva PA; Sysoev M; de Abreu MS; Alpyshov ET; Serikuly N; Wang D; Wang M; Tang Z; Yan D; Strekalova TV; Volgin AD; Amstislavskaya TG; Wang J; Song C; Kalueff AV
    Aquat Toxicol; 2019 May; 210():44-55. PubMed ID: 30822702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenomics Approach to Investigate Behavioral Toxicity of Environmental or Occupational Toxicants in Adult Zebrafish (Danio rerio).
    Audira G; Lai YH; Huang JC; Chen KH; Hsiao CD
    Curr Protoc; 2021 Aug; 1(8):e223. PubMed ID: 34387947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aquatic toxicology of fluoxetine: understanding the knowns and the unknowns.
    Stewart AM; Grossman L; Nguyen M; Maximino C; Rosemberg DB; Echevarria DJ; Kalueff AV
    Aquat Toxicol; 2014 Nov; 156():269-73. PubMed ID: 25245382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental neurotoxicity fingerprint of silica nanoparticles at environmentally relevant level on larval zebrafish using a neurobehavioral-phenomics-based biological warning method.
    Li X; Dang J; Li Y; Wang L; Li N; Liu K; Jin M
    Sci Total Environ; 2021 Jan; 752():141878. PubMed ID: 32890834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zebrafish behavioral phenomics applied for phenotyping aquatic neurotoxicity induced by lead contaminants of environmentally relevant level.
    Li X; Kong H; Ji X; Gao Y; Jin M
    Chemosphere; 2019 Jun; 224():445-454. PubMed ID: 30831495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Color as an important biological variable in zebrafish models: Implications for translational neurobehavioral research.
    de Abreu MS; Giacomini ACVV; Genario R; Dos Santos BE; Marcon L; Demin KA; Galstyan DS; Strekalova T; Amstislavskaya TG; Kalueff AV
    Neurosci Biobehav Rev; 2021 May; 124():1-15. PubMed ID: 33359096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fish behavior: A promising model for aquatic toxicology research.
    Hong X; Zha J
    Sci Total Environ; 2019 Oct; 686():311-321. PubMed ID: 31181518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zebrafish (Danio rerio) as a model organism for investigating endocrine disruption.
    Segner H
    Comp Biochem Physiol C Toxicol Pharmacol; 2009 Mar; 149(2):187-95. PubMed ID: 18955160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacological analyses of learning and memory in zebrafish (Danio rerio).
    Bailey JM; Oliveri AN; Levin ED
    Pharmacol Biochem Behav; 2015 Dec; 139 Pt B(0 0):103-11. PubMed ID: 25792292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anxiogenic-like effects of chronic nicotine exposure in zebrafish.
    Stewart AM; Grossman L; Collier AD; Echevarria DJ; Kalueff AV
    Pharmacol Biochem Behav; 2015 Dec; 139 Pt B():112-20. PubMed ID: 25643654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavioral toxicity of tannery effluent in zebrafish (Danio rerio) used as model system.
    Chagas TQ; da Silva Alvarez TG; Montalvão MF; Mesak C; Rocha TL; da Costa Araújo AP; Malafaia G
    Sci Total Environ; 2019 Oct; 685():923-933. PubMed ID: 31247439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zebrafish as the toxicant screening model: Transgenic and omics approaches.
    Lai KP; Gong Z; Tse WKF
    Aquat Toxicol; 2021 May; 234():105813. PubMed ID: 33812311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Legal aspects of zebrafish neuropharmacology and neurotoxicology research.
    de Abreu MS; Giacomini ACVV; Echevarria DJ; Kalueff AV
    Regul Toxicol Pharmacol; 2019 Feb; 101():65-70. PubMed ID: 30453007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tris (2-butoxyethyl) phosphate affects motor behavior and axonal growth in zebrafish (Danio rerio) larvae.
    Jiang F; Liu J; Zeng X; Yu L; Liu C; Wang J
    Aquat Toxicol; 2018 May; 198():215-223. PubMed ID: 29558706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. River waters induced neurotoxicity in an embryo-larval zebrafish model.
    García-Cambero JP; Catalá M; Valcárcel Y
    Ecotoxicol Environ Saf; 2012 Oct; 84():84-91. PubMed ID: 22906717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuropharmacology, pharmacogenetics and pharmacogenomics of aggression: The zebrafish model.
    de Abreu MS; Giacomini ACVV; Genario R; Dos Santos BE; da Rosa LG; Demin KA; Wappler-Guzzetta EA; Kalueff AV
    Pharmacol Res; 2019 Mar; 141():602-608. PubMed ID: 30708051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Building Zebrafish Neurobehavioral Phenomics: Effects of Common Environmental Factors on Anxiety and Locomotor Activity.
    Stewart AM; Kaluyeva AA; Poudel MK; Nguyen M; Song C; Kalueff AV
    Zebrafish; 2015 Oct; 12(5):339-48. PubMed ID: 26244595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of ozonated sewage effluent on reproduction and behavioral endpoints in zebrafish (Danio rerio).
    Pohl J; Björlenius B; Brodin T; Carlsson G; Fick J; Larsson DGJ; Norrgren L; Örn S
    Aquat Toxicol; 2018 Jul; 200():93-101. PubMed ID: 29729477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing 'integrative' zebrafish models of behavioral and metabolic disorders.
    Nguyen M; Yang E; Neelkantan N; Mikhaylova A; Arnold R; Poudel MK; Stewart AM; Kalueff AV
    Behav Brain Res; 2013 Nov; 256():172-87. PubMed ID: 23948218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.