BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 26372220)

  • 1. Combined Small RNA and Degradome Sequencing Reveals Novel MiRNAs and Their Targets in the High-Yield Mutant Wheat Strain Yunong 3114.
    Chen F; Zhang X; Zhang N; Wang S; Yin G; Dong Z; Cui D
    PLoS One; 2015; 10(9):e0137773. PubMed ID: 26372220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small RNA and Degradome Sequencing Reveal Complex Roles of miRNAs and Their Targets in Developing Wheat Grains.
    Li T; Ma L; Geng Y; Hao C; Chen X; Zhang X
    PLoS One; 2015; 10(10):e0139658. PubMed ID: 26426440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome analysis of the Chinese bread wheat cultivar Yunong 201 and its ethyl methanesulfonate mutant line.
    Zhang N; Wang S; Zhang X; Dong Z; Chen F; Cui D
    Gene; 2016 Jan; 575(2 Pt 1):285-93. PubMed ID: 26342963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Fusarium graminearum-responsive miRNAs and their targets in wheat by sRNA sequencing and degradome analysis.
    Jin X; Jia L; Wang Y; Li B; Sun D; Chen X
    Funct Integr Genomics; 2020 Jan; 20(1):51-61. PubMed ID: 31302787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of small RNAs and their target genes in wheat seedlings using sequencing-based approaches.
    Li YF; Zheng Y; Jagadeeswaran G; Sunkar R
    Plant Sci; 2013 Apr; 203-204():17-24. PubMed ID: 23415324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of miRNAs and their targets through high-throughput sequencing and degradome analysis in male and female Asparagus officinalis.
    Chen J; Zheng Y; Qin L; Wang Y; Chen L; He Y; Fei Z; Lu G
    BMC Plant Biol; 2016 Apr; 16():80. PubMed ID: 27068118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of microRNAs to cold treatment in the young spikes of common wheat.
    Song G; Zhang R; Zhang S; Li Y; Gao J; Han X; Chen M; Wang J; Li W; Li G
    BMC Genomics; 2017 Feb; 18(1):212. PubMed ID: 28241738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The miRNAome of durum wheat: isolation and characterisation of conserved and novel microRNAs and their target genes.
    De Paola D; Zuluaga DL; Sonnante G
    BMC Genomics; 2016 Jul; 17():505. PubMed ID: 27448633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and characterization of microRNAs from wheat (Triticum aestivum L.).
    Yao Y; Guo G; Ni Z; Sunkar R; Du J; Zhu JK; Sun Q
    Genome Biol; 2007; 8(6):R96. PubMed ID: 17543110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis.
    Hao DC; Yang L; Xiao PG; Liu M
    Physiol Plant; 2012 Dec; 146(4):388-403. PubMed ID: 22708792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated Analysis of Small RNA, Transcriptome, and Degradome Sequencing Reveals the Water-Deficit and Heat Stress Response Network in Durum Wheat.
    Liu H; Able AJ; Able JA
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput sequencing revealed that microRNAs were involved in the development of superior and inferior grains in bread wheat.
    Wang Y; Shi C; Yang T; Zhao L; Chen J; Zhang N; Ren Y; Tang G; Cui D; Chen F
    Sci Rep; 2018 Sep; 8(1):13854. PubMed ID: 30218081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational identification of microRNAs and their targets in wheat (Triticum aestivum L.).
    Han Y; Luan F; Zhu H; Shao Y; Chen A; Lu C; Luo Y; Zhu B
    Sci China C Life Sci; 2009 Nov; 52(11):1091-100. PubMed ID: 19937208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of miRNAs and their targets in wheat (Triticum aestivum L.) by EST analysis.
    Han J; Kong ML; Xie H; Sun QP; Nan ZJ; Zhang QZ; Pan JB
    Genet Mol Res; 2013 Sep; 12(3):3793-805. PubMed ID: 24085441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterization of microRNAs in the flag leaf and developing seed of wheat (Triticum aestivum L.).
    Han R; Jian C; Lv J; Yan Y; Chi Q; Li Z; Wang Q; Zhang J; Liu X; Zhao H
    BMC Genomics; 2014 Apr; 15():289. PubMed ID: 24734873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput sequencing and degradome analysis reveal neutral evolution of Cercis gigantea microRNAs and their targets.
    Guo W; Zhang Y; Wang Q; Zhan Y; Zhu G; Yu Q; Zhu L
    Planta; 2016 Jan; 243(1):83-95. PubMed ID: 26342708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of a subset of microRNAs in wheat (Triticum aestivum L.).
    Su C; Yang X; Gao S; Tang Y; Zhao C; Li L
    Genomics; 2014 Apr; 103(4):298-307. PubMed ID: 24667243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined small RNA and degradome sequencing to identify miRNAs and their targets in response to drought in foxtail millet.
    Wang Y; Li L; Tang S; Liu J; Zhang H; Zhi H; Jia G; Diao X
    BMC Genet; 2016 Apr; 17():57. PubMed ID: 27068810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide characterization of rice black streaked dwarf virus-responsive microRNAs in rice leaves and roots by small RNA and degradome sequencing.
    Sun Z; He Y; Li J; Wang X; Chen J
    Plant Cell Physiol; 2015 Apr; 56(4):688-99. PubMed ID: 25535197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress.
    Xie F; Stewart CN; Taki FA; He Q; Liu H; Zhang B
    Plant Biotechnol J; 2014 Apr; 12(3):354-66. PubMed ID: 24283289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.