These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 26372633)
1. Semi-manual mastoidectomy assisted by human-robot collaborative control - A temporal bone replica study. Lim H; Matsumoto N; Cho B; Hong J; Yamashita M; Hashizume M; Yi BJ Auris Nasus Larynx; 2016 Apr; 43(2):161-5. PubMed ID: 26372633 [TBL] [Abstract][Full Text] [Related]
2. Development of the first force-controlled robot for otoneurosurgery. Federspil PA; Geisthoff UW; Henrich D; Plinkert PK Laryngoscope; 2003 Mar; 113(3):465-71. PubMed ID: 12616198 [TBL] [Abstract][Full Text] [Related]
4. The navigation-controlled drill in temporal bone surgery: a feasibility study. Strauss G; Koulechov K; Hofer M; Dittrich E; Grunert R; Moeckel H; Müller E; Korb W; Trantakis C; Schulz T; Meixensberger J; Dietz A; Lueth T Laryngoscope; 2007 Mar; 117(3):434-41. PubMed ID: 17334303 [TBL] [Abstract][Full Text] [Related]
5. Image-Guided Mastoidectomy with a Cooperatively Controlled ENT Microsurgery Robot. Razavi CR; Wilkening PR; Yin R; Barber SR; Taylor RH; Carey JP; Creighton FX Otolaryngol Head Neck Surg; 2019 Nov; 161(5):852-855. PubMed ID: 31331246 [TBL] [Abstract][Full Text] [Related]
6. A cadaver study of mastoidectomy using an image-guided human-robot collaborative control system. Yoo MH; Lee HS; Yang CJ; Lee SH; Lim H; Lee S; Yi BJ; Chung JW Laryngoscope Investig Otolaryngol; 2017 Oct; 2(5):208-214. PubMed ID: 29094065 [TBL] [Abstract][Full Text] [Related]
7. An experimental evaluation of the force requirements for robotic mastoidectomy. Dillon NP; Kratchman LB; Dietrich MS; Labadie RF; Webster RJ; Withrow TJ Otol Neurotol; 2013 Sep; 34(7):e93-102. PubMed ID: 23787968 [TBL] [Abstract][Full Text] [Related]
8. In vitro accuracy evaluation of image-guided robot system for direct cochlear access. Bell B; Gerber N; Williamson T; Gavaghan K; Wimmer W; Caversaccio M; Weber S Otol Neurotol; 2013 Sep; 34(7):1284-90. PubMed ID: 23921934 [TBL] [Abstract][Full Text] [Related]
9. Assessment of visualization of structures in the middle ear via Tos modified canal wall-up mastoidectomy versus classic canal wall-up and canal wall-down mastoidectomies. Uzun C; Kutoglu T Int J Pediatr Otorhinolaryngol; 2007 Jun; 71(6):851-6. PubMed ID: 17368815 [TBL] [Abstract][Full Text] [Related]
10. Improvement of the insertion axis for cochlear implantation with a robot-based system. Torres R; Kazmitcheff G; De Seta D; Ferrary E; Sterkers O; Nguyen Y Eur Arch Otorhinolaryngol; 2017 Feb; 274(2):715-721. PubMed ID: 27704279 [TBL] [Abstract][Full Text] [Related]
12. State of Robotic Mastoidectomy: Literature Review. Zagzoog N; Yang VXD World Neurosurg; 2018 Aug; 116():347-351. PubMed ID: 29870847 [TBL] [Abstract][Full Text] [Related]
13. Configuration optimization and experimental accuracy evaluation of a bone-attached, parallel robot for skull surgery. Kobler JP; Nuelle K; Lexow GJ; Rau TS; Majdani O; Kahrs LA; Kotlarski J; Ortmaier T Int J Comput Assist Radiol Surg; 2016 Mar; 11(3):421-36. PubMed ID: 26410844 [TBL] [Abstract][Full Text] [Related]
14. Development and validation of a collaborative robotic platform based on monocular vision for oral surgery: an in vitro study. Huang J; Bao J; Tan Z; Shen S; Yu H Int J Comput Assist Radiol Surg; 2024 Sep; 19(9):1797-1808. PubMed ID: 38822980 [TBL] [Abstract][Full Text] [Related]
15. Validation of a networked virtual reality simulation of temporal bone surgery. O'Leary SJ; Hutchins MA; Stevenson DR; Gunn C; Krumpholz A; Kennedy G; Tykocinski M; Dahm M; Pyman B Laryngoscope; 2008 Jun; 118(6):1040-6. PubMed ID: 18354339 [TBL] [Abstract][Full Text] [Related]
16. Cadaveric Testing of Robot-Assisted Access to the Internal Auditory Canal for Vestibular Schwannoma Removal. Dillon NP; Balachandran R; Siebold MA; Webster RJ; Wanna GB; Labadie RF Otol Neurotol; 2017 Mar; 38(3):441-447. PubMed ID: 28079677 [TBL] [Abstract][Full Text] [Related]
17. The development and error analysis of a kinematic parameters based spatial positioning method for an orthopedic navigation robot system. Pei B; Zhu G; Wang Y; Qiao H; Chen X; Wang B; Li X; Zhang W; Liu W; Fan Y Int J Med Robot; 2017 Sep; 13(3):. PubMed ID: 27723229 [TBL] [Abstract][Full Text] [Related]
18. A Filtering Approach for Image-Guided Surgery With a Highly Articulated Surgical Snake Robot. Tully S; Choset H IEEE Trans Biomed Eng; 2016 Feb; 63(2):392-402. PubMed ID: 26241966 [TBL] [Abstract][Full Text] [Related]
19. Feasibility of using EMG for early detection of the facial nerve during robotic direct cochlear access. Ansó J; Stahl C; Gerber N; Williamson T; Gavaghan K; Rösler KM; Caversaccio MD; Weber S; Bell B Otol Neurotol; 2014 Mar; 35(3):545-54. PubMed ID: 24492132 [TBL] [Abstract][Full Text] [Related]
20. Surgical simulator for temporal bone dissection training. Okada DM; de Sousa AM; Huertas Rde A; Suzuki FA Braz J Otorhinolaryngol; 2010; 76(5):575-8. PubMed ID: 20963339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]