These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
798 related articles for article (PubMed ID: 26372672)
1. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation. Mondal B; Mac Giolla Eain M; Xu Q; Egan VM; Punch J; Lyons AM ACS Appl Mater Interfaces; 2015 Oct; 7(42):23575-88. PubMed ID: 26372672 [TBL] [Abstract][Full Text] [Related]
2. Recurrent filmwise and dropwise condensation on a beetle mimetic surface. Hou Y; Yu M; Chen X; Wang Z; Yao S ACS Nano; 2015 Jan; 9(1):71-81. PubMed ID: 25482594 [TBL] [Abstract][Full Text] [Related]
3. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. Miljkovic N; Enright R; Wang EN ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016 [TBL] [Abstract][Full Text] [Related]
4. Using amphiphilic nanostructures to enable long-range ensemble coalescence and surface rejuvenation in dropwise condensation. Anderson DM; Gupta MK; Voevodin AA; Hunter CN; Putnam SA; Tsukruk VV; Fedorov AG ACS Nano; 2012 Apr; 6(4):3262-8. PubMed ID: 22456273 [TBL] [Abstract][Full Text] [Related]
5. Flow condensation on copper-based nanotextured superhydrophobic surfaces. Torresin D; Tiwari MK; Del Col D; Poulikakos D Langmuir; 2013 Jan; 29(2):840-8. PubMed ID: 23249322 [TBL] [Abstract][Full Text] [Related]
6. Investigation of Dropwise Condensation Heat Transfer on Laser-Ablated Superhydrophobic/Hydrophilic Hybrid Copper Surfaces. Song Z; Lu M; Chen X ACS Omega; 2020 Sep; 5(37):23588-23595. PubMed ID: 32984678 [TBL] [Abstract][Full Text] [Related]
7. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces. Miljkovic N; Preston DJ; Enright R; Wang EN ACS Nano; 2013 Dec; 7(12):11043-54. PubMed ID: 24261667 [TBL] [Abstract][Full Text] [Related]
8. Dropwise Condensate Comb for Enhanced Heat Transfer. Tang Y; Yang X; Wang L; Li Y; Zhu D ACS Appl Mater Interfaces; 2023 May; 15(17):21549-21561. PubMed ID: 37083343 [TBL] [Abstract][Full Text] [Related]
10. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces. Li G; Alhosani MH; Yuan S; Liu H; Ghaferi AA; Zhang T Langmuir; 2014 Dec; 30(48):14498-511. PubMed ID: 25419845 [TBL] [Abstract][Full Text] [Related]
11. Microdroplet growth mechanism during water condensation on superhydrophobic surfaces. Rykaczewski K Langmuir; 2012 May; 28(20):7720-9. PubMed ID: 22548441 [TBL] [Abstract][Full Text] [Related]
12. Biphilic Surfaces with Optimum Hydrophobic Islands on a Superhydrophobic Background for Dropwise Flow Condensation. Chehrghani MM; Abbasiasl T; Sadaghiani AK; Koşar A Langmuir; 2021 Nov; 37(46):13567-13575. PubMed ID: 34751032 [TBL] [Abstract][Full Text] [Related]
13. Nanoarray-Embedded Hierarchical Surfaces for Highly Durable Dropwise Condensation. Hu Y; Jiang K; Liew KM; Zhang LW Research (Wash D C); 2022; 2022():9789657. PubMed ID: 36061819 [TBL] [Abstract][Full Text] [Related]
14. Condensation Heat-Transfer Performance of Thermally Stable Superhydrophobic Cerium-Oxide Surfaces. Shim J; Seo D; Oh S; Lee J; Nam Y ACS Appl Mater Interfaces; 2018 Sep; 10(37):31765-31776. PubMed ID: 30136846 [TBL] [Abstract][Full Text] [Related]
15. Dropwise condensation on solid hydrophilic surfaces. Cha H; Vahabi H; Wu A; Chavan S; Kim MK; Sett S; Bosch SA; Wang W; Kota AK; Miljkovic N Sci Adv; 2020 Jan; 6(2):eaax0746. PubMed ID: 31950076 [TBL] [Abstract][Full Text] [Related]
16. Rationally 3D-Textured Copper Surfaces for Laplace Pressure Imbalance-Induced Enhancement in Dropwise Condensation. Sharma CS; Stamatopoulos C; Suter R; von Rohr PR; Poulikakos D ACS Appl Mater Interfaces; 2018 Aug; 10(34):29127-29135. PubMed ID: 30067013 [TBL] [Abstract][Full Text] [Related]
17. Heat Transfer Enhancement During Water and Hydrocarbon Condensation on Lubricant Infused Surfaces. Preston DJ; Lu Z; Song Y; Zhao Y; Wilke KL; Antao DS; Louis M; Wang EN Sci Rep; 2018 Jan; 8(1):540. PubMed ID: 29323200 [TBL] [Abstract][Full Text] [Related]
18. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation. Wen R; Xu S; Zhao D; Lee YC; Ma X; Yang R ACS Appl Mater Interfaces; 2017 Dec; 9(51):44911-44921. PubMed ID: 29214806 [TBL] [Abstract][Full Text] [Related]
19. Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. Miljkovic N; Enright R; Nam Y; Lopez K; Dou N; Sack J; Wang EN Nano Lett; 2013 Jan; 13(1):179-87. PubMed ID: 23190055 [TBL] [Abstract][Full Text] [Related]
20. Tuning nanostructured surfaces with hybrid wettability areas to enhance condensation. Gao S; Liu W; Liu Z Nanoscale; 2019 Jan; 11(2):459-466. PubMed ID: 30325374 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]