BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 26372957)

  • 1. Single quantum dot controls a plasmonic cavity's scattering and anisotropy.
    Hartsfield T; Chang WS; Yang SC; Ma T; Shi J; Sun L; Shvets G; Link S; Li X
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):12288-92. PubMed ID: 26372957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum nature of a strongly coupled single quantum dot-cavity system.
    Hennessy K; Badolato A; Winger M; Gerace D; Atatüre M; Gulde S; Fält S; Hu EL; Imamoğlu A
    Nature; 2007 Feb; 445(7130):896-9. PubMed ID: 17259971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System.
    He Y; Zhu KD
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28632165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling cavity reflectivity with a single quantum dot.
    Englund D; Faraon A; Fushman I; Stoltz N; Petroff P; Vucković J
    Nature; 2007 Dec; 450(7171):857-61. PubMed ID: 18064008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems.
    Hatef A; Sadeghi SM; Fortin-Deschênes S; Boulais E; Meunier M
    Opt Express; 2013 Mar; 21(5):5643-53. PubMed ID: 23482138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle-semiconductor quantum dot system coupled to a plasmonic waveguide.
    Kim NC; Ko MC; Choe SI; Hao ZH; Zhou L; Li JB; Im SJ; Ko YH; Jo CG; Wang QQ
    Nanotechnology; 2016 Nov; 27(46):465703. PubMed ID: 27749280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit.
    Santhosh K; Bitton O; Chuntonov L; Haran G
    Nat Commun; 2016 Jun; 7():ncomms11823. PubMed ID: 27293116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherent confinement of plasmonic field in quantum dot-metallic nanoparticle molecules.
    Sadeghi SM; Hatef A; Fortin-Deschenes S; Meunier M
    Nanotechnology; 2013 May; 24(20):205201. PubMed ID: 23609222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Room-Temperature Strong Coupling Between a Single Quantum Dot and a Single Plasmonic Nanoparticle.
    Li JY; Li W; Liu J; Zhong J; Liu R; Chen H; Wang XH
    Nano Lett; 2022 Jun; 22(12):4686-4693. PubMed ID: 35638870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-aligned deterministic coupling of single quantum emitter to nanofocused plasmonic modes.
    Gong SH; Kim JH; Ko YH; Rodriguez C; Shin J; Lee YH; Dang le S; Zhang X; Cho YH
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5280-5. PubMed ID: 25870303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colloidal Assembly of Au-Quantum Dot-Au Sandwiched Nanostructures with Strong Plasmon-Exciton Coupling.
    Luo Y; Wang Y; Liu M; Zhu H; Chen O; Zou S; Zhao J
    J Phys Chem Lett; 2020 Apr; 11(7):2449-2456. PubMed ID: 32155339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots.
    Ozel T; Nizamoglu S; Sefunc MA; Samarskaya O; Ozel IO; Mutlugun E; Lesnyak V; Gaponik N; Eychmuller A; Gaponenko SV; Demir HV
    ACS Nano; 2011 Feb; 5(2):1328-34. PubMed ID: 21247187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fano resonance-induced negative optical scattering force on plasmonic nanoparticles.
    Chen H; Liu S; Zi J; Lin Z
    ACS Nano; 2015 Feb; 9(2):1926-35. PubMed ID: 25635617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Pure Dephasing and Phonon Scattering on the Coupling of Semiconductor Quantum Dots to Optical Cavities.
    Jarlov C; Wodey É; Lyasota A; Calic M; Gallo P; Dwir B; Rudra A; Kapon E
    Phys Rev Lett; 2016 Aug; 117(7):076801. PubMed ID: 27563983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anisotropy-Induced Quantum Interference and Population Trapping between Orthogonal Quantum Dot Exciton States in Semiconductor Cavity Systems.
    Hughes S; Agarwal GS
    Phys Rev Lett; 2017 Feb; 118(6):063601. PubMed ID: 28234504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning Hybrid exciton-Photon Fano Resonances in Two-Dimensional Organic-Inorganic Perovskite Thin Films.
    Muckel F; Guye KN; Gallagher SM; Liu Y; Ginger DS
    Nano Lett; 2021 Jul; 21(14):6124-6131. PubMed ID: 34269589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong coupling among semiconductor quantum dots induced by a metal nanoparticle.
    He Y; Zhu KD
    Nanoscale Res Lett; 2012 Feb; 7(1):95. PubMed ID: 22297024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing Coherent Light-Matter Interactions through Microcavity-Engineered Plasmonic Resonances.
    Peng P; Liu YC; Xu D; Cao QT; Lu G; Gong Q; Xiao YF
    Phys Rev Lett; 2017 Dec; 119(23):233901. PubMed ID: 29286676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic metaresonances: harnessing nonlocal effects for prospective biomedical applications.
    Hapuarachchi H; Gunapala SD; Premaratne M
    J Phys Condens Matter; 2019 Aug; 31(32):325301. PubMed ID: 30897555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum-dot-induced transparency in a nanoscale plasmonic resonator.
    Wu X; Gray SK; Pelton M
    Opt Express; 2010 Nov; 18(23):23633-45. PubMed ID: 21164708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.