BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26373040)

  • 1. pH Responsive Release of Doxorubicin to the Cancer Cells by Functionalized Multi-Walled Carbon Nanotubes.
    Anbarasan B; Babu SV; Elango K; Shriya B; Ramaprabhu S
    J Nanosci Nanotechnol; 2015 Jul; 15(7):4799-805. PubMed ID: 26373040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and evaluation of pH-responsive single-walled carbon nanotube-doxorubicin complexes in cancer cells.
    Gu YJ; Cheng J; Jin J; Cheng SH; Wong WT
    Int J Nanomedicine; 2011; 6():2889-98. PubMed ID: 22131835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PEGylated multi-walled carbon nanotubes as versatile vector for tumor-specific intracellular triggered release with enhanced anti-cancer efficiency: Optimization of length and PEGylation degree.
    Zhao X; Tian K; Zhou T; Jia X; Li J; Liu P
    Colloids Surf B Biointerfaces; 2018 Aug; 168():43-49. PubMed ID: 29482875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-Responsive single walled carbon nanotube dispersion for target specific release of doxorubicin to cancer cells.
    Ghosh M; Brahmachari S; Das PK
    Macromol Biosci; 2014 Dec; 14(12):1795-806. PubMed ID: 25212998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-sensitive loading/releasing of doxorubicin using single-walled carbon nanotube and multi-walled carbon nanotube: A molecular dynamics study.
    Maleki R; Afrouzi HH; Hosseini M; Toghraie D; Piranfar A; Rostami S
    Comput Methods Programs Biomed; 2020 Apr; 186():105210. PubMed ID: 31759297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted and pH-responsive delivery of doxorubicin to cancer cells using multifunctional dendrimer-modified multi-walled carbon nanotubes.
    Wen S; Liu H; Cai H; Shen M; Shi X
    Adv Healthc Mater; 2013 Sep; 2(9):1267-76. PubMed ID: 23447549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative studies of polyethylenimine-doxorubicin conjugates with pH-sensitive and pH-insensitive linkers.
    Dong DW; Tong SW; Qi XR
    J Biomed Mater Res A; 2013 May; 101(5):1336-44. PubMed ID: 23065848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heparin modified graphene oxide for pH-sensitive sustained release of doxorubicin hydrochloride.
    Zhang B; Yang X; Wang Y; Zhai G
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():198-206. PubMed ID: 28415455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programmed pH/reduction-responsive nanoparticles for efficient delivery of antitumor agents in vivo.
    Chen WL; Yang SD; Li F; Qu CX; Liu Y; Wang Y; Wang DD; Zhang XN
    Acta Biomater; 2018 Nov; 81():219-230. PubMed ID: 30267887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-sensitive nanocarrier based on gold/silver core-shell nanoparticles decorated multi-walled carbon manotubes for tracing drug release in living cells.
    Chen P; Wang Z; Zong S; Zhu D; Chen H; Zhang Y; Wu L; Cui Y
    Biosens Bioelectron; 2016 Jan; 75():446-51. PubMed ID: 26360244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2.
    Ren J; Shen S; Wang D; Xi Z; Guo L; Pang Z; Qian Y; Sun X; Jiang X
    Biomaterials; 2012 Apr; 33(11):3324-33. PubMed ID: 22281423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Featured Article: Chemotherapeutic delivery using pH-responsive, affinity-based release.
    Cyphert EL; Fu AS; von Recum HA
    Exp Biol Med (Maywood); 2017 Apr; 242(7):692-699. PubMed ID: 28178856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH-responsive carbon nanotube-based hybrid nanogels as the smart anticancer drug carrier.
    Seyfoori A; Sarfarazijami S; Seyyed Ebrahimi SA
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):1437-1443. PubMed ID: 30991848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytotoxicity of doxrubicin loaded single-walled carbon nanotubes.
    Ünlü A; Meran M; Dinc B; Karatepe N; Bektaş M; Güner FS
    Mol Biol Rep; 2018 Aug; 45(4):523-531. PubMed ID: 29797174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption behavior of epirubicin hydrochloride on carboxylated carbon nanotubes.
    Chen Z; Pierre D; He H; Tan S; Pham-Huy C; Hong H; Huang J
    Int J Pharm; 2011 Feb; 405(1-2):153-61. PubMed ID: 21145959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smart pH/Redox Dual-Responsive Nanogels for On-Demand Intracellular Anticancer Drug Release.
    Yang H; Wang Q; Huang S; Xiao A; Li F; Gan L; Yang X
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7729-38. PubMed ID: 26960600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytosine-Rich DNA Fragments Covalently Bound to Carbon Nanotube as Factors Triggering Doxorubicin Release at Acidic pH. A Molecular Dynamics Study.
    Wolski P; Nieszporek K; Panczyk T
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Schiff base-containing dextran nanogel as pH-sensitive drug delivery system of doxorubicin: Synthesis and characterization.
    Su H; Zhang W; Wu Y; Han X; Liu G; Jia Q; Shan S
    J Biomater Appl; 2018 Aug; 33(2):170-181. PubMed ID: 29940809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutathione detonated and pH responsive nano-clusters of Au nanorods with a high dose of DOX for treatment of multidrug resistant cancer.
    Wang Y; Wang F; Liu Y; Xu S; Shen Y; Feng N; Guo S
    Acta Biomater; 2018 Jul; 75():334-345. PubMed ID: 29885528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and characterisation of doxorubicin-releasing chitosan microspheres for anti-cancer chemoembolisation.
    Park JM; Lee SY; Lee GH; Chung EY; Chang KM; Kwak BK; Kuh HJ; Lee J
    J Microencapsul; 2012; 29(7):695-705. PubMed ID: 22583128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.