BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 26373053)

  • 1. Data Archive Based on Graphene Nanoflake Shuttle Encapsulated in Bi-Layered Graphene Nanoribbon.
    Kang JW; Lee KW
    J Nanosci Nanotechnol; 2015 Jul; 15(7):4895-9. PubMed ID: 26373053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Dynamics Study of Graphene Nanoflake Shuttle Device on Graphene Nanoribbon with Carbon Nanotube Blocks.
    Kang JW; Kim KS; Kwon OK
    J Nanosci Nanotechnol; 2020 Sep; 20(9):5570-5574. PubMed ID: 32331136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Dynamics Study on Graphene-Nanoflake Sensor Sandwiched Between Crossed Graphene-Nanoribbon Junctions.
    Kang JW; Kim KS; Kim HW; Kwon OK
    J Nanosci Nanotechnol; 2021 Jul; 21(7):3887-3890. PubMed ID: 33715711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Dynamics Simulations of a C60 Molecule Adsorbed on Sinusoidal Graphene Nanoflake.
    Kwon OK; Kang JW; Kim KS; Park J
    J Nanosci Nanotechnol; 2015 Jul; 15(7):4908-12. PubMed ID: 26373055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oscillatory Behavior of Graphene Nanoflake on Graphene Nanoribbon.
    Kang JW; Lee KW
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1199-202. PubMed ID: 26353633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulation of square graphene-nanoflake oscillator on graphene nanoribbon.
    Kang JW; Lee KW
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9158-64. PubMed ID: 25971029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Schematics and Energetics of Bucky Shuttle Memory on Graphene Nanoribbon Array.
    Kang JW; Lee KW
    J Nanosci Nanotechnol; 2016 Mar; 16(3):2891-6. PubMed ID: 27455728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Dynamics Simulation Study on Energy Exchange Between Vibration Modes of a Square Graphene Nanoflake Oscillator.
    Lee E; Kang JW; Kim KS; Kwon OK
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1596-602. PubMed ID: 27433628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetics and electronic structure of encapsulated graphene nanoribbons in carbon nanotube.
    Mandal B; Sarkar S; Sarkar P
    J Phys Chem A; 2013 Sep; 117(36):8568-75. PubMed ID: 23675973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-layered assembly of vanadium pentoxide nanowires on graphene for nanowire-based lithography technique.
    Fukui A; Aoki Y; Matsuyama K; Ichimiya H; Nouchi R; Takei K; Ashida A; Yoshimura T; Fujimura N; Kiriya D
    Nanotechnology; 2021 Nov; 33(7):. PubMed ID: 34731834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Edge-Functionalized Graphene Nanoribbon Chemical Sensor: Comparison with Carbon Nanotube and Graphene.
    Cho KM; Cho SY; Chong S; Koh HJ; Kim DW; Kim J; Jung HT
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42905-42914. PubMed ID: 30421906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scattering characteristics of an exciton-plasmon nanohybrid made by coupling a monolayer graphene nanoflake to a carbon nanotube.
    Senevirathne V; Hapuarachchi H; Mallawaarachchi S; Gunapala SD; Stockman MI; Premaratne M
    J Phys Condens Matter; 2019 Feb; 31(8):085302. PubMed ID: 30540985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of resonance frequencies between normal and tangential vibration modes of graphene-nanoribbon-resonators.
    Kwon OK; Hwang HJ; Park J
    J Nanosci Nanotechnol; 2013 Dec; 13(12):8095-100. PubMed ID: 24266198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral graphene nanoribbon inside a carbon nanotube: ab initio study.
    Lebedeva IV; Popov AM; Knizhnik AA; Khlobystov AN; Potapkin BV
    Nanoscale; 2012 Aug; 4(15):4522-9. PubMed ID: 22696165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective interface transparency in graphene nanoribbon based molecular junctions.
    Dou KP; Kaun CC; Zhang RQ
    Nanoscale; 2018 Mar; 10(10):4861-4864. PubMed ID: 29473924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanics of rolling of nanoribbon on tube and sphere.
    Yin Q; Shi X
    Nanoscale; 2013 Jun; 5(12):5450-5. PubMed ID: 23661239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data for quantum phonon transport in strained carbon atomic chains bridging graphene and graphene nanoribbon electrodes.
    Kim HS; Kim TH; Kim YH
    Data Brief; 2018 Dec; 21():2421-2429. PubMed ID: 30547069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large stretchability and failure mechanism of graphene kirigami under tension.
    Hua Z; Zhao Y; Dong S; Yu P; Liu Y; Wei N; Zhao J
    Soft Matter; 2017 Dec; 13(47):8930-8939. PubMed ID: 29143828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulations of a Graphene Nanoflake as a Nanovector To Improve ZnPc Phototherapy Toxicity: From Vacuum to Cell Membrane.
    Duverger E; Picaud F; Stauffer L; Sonnet P
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37554-37562. PubMed ID: 29023087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimizing the Programming Power of Phase Change Memory by Using Graphene Nanoribbon Edge-Contact.
    Wang X; Song S; Wang H; Guo T; Xue Y; Wang R; Wang H; Chen L; Jiang C; Chen C; Shi Z; Wu T; Song W; Zhang S; Watanabe K; Taniguchi T; Song Z; Xie X
    Adv Sci (Weinh); 2022 Sep; 9(25):e2202222. PubMed ID: 36062987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.