These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 26373139)

  • 1. Self-Assembly of CdTe Nanoparticles Into Nanowires by a Specific Wavelength of Light.
    Kim KS; Lee KS; Kang JW; Park BH
    J Nanosci Nanotechnol; 2015 Jul; 15(7):5346-9. PubMed ID: 26373139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous Self-Assembly of Thiol-Capped CdTe Nanoparticles Into Nanowires Under Dark Conditions.
    Lee YE; Kang JW; Kim KS
    J Nanosci Nanotechnol; 2015 Oct; 15(10):8275-8. PubMed ID: 26726502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of CdTe nanoparticles into nanowires via self-assembly.
    Lee KS; Kang JW; Cha JH; Kim KS
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8863-6. PubMed ID: 25958618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled transformation of CdTe nanoparticles into nanoribbons via self-assembling process.
    Park SM; Kang WK; Kang JW; Hong YK; Kim KS
    J Nanosci Nanotechnol; 2012 May; 12(5):4309-12. PubMed ID: 22852396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of CdTe Nanoparticles Into Twisted-Nanoribbons by Light-Control.
    Lee SM; Kim H; Kang JW; Kim JY; Kim KS
    J Nanosci Nanotechnol; 2015 Jan; 15(1):672-5. PubMed ID: 26328424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental determination of the absorption cross-section and molar extinction coefficient of CdSe and CdTe nanowires.
    Protasenko V; Bacinello D; Kuno M
    J Phys Chem B; 2006 Dec; 110(50):25322-31. PubMed ID: 17165978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fabrication of polycrystalline silver nanowires via self-assembled nanotubes at controlled temperature.
    Liu JH; Tsai CY; Chiu YH; Hsieh FM
    Nanotechnology; 2009 Jan; 20(3):035301. PubMed ID: 19417290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinspired inimitable cadmium telluride quantum dots for bioimaging purposes.
    Pawar V; Kumar AR; Zinjarde S; Gosavi S
    J Nanosci Nanotechnol; 2013 Jun; 13(6):3826-31. PubMed ID: 23862414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanowires and nanoribbons formed by methylphosphonic acid.
    Archanjo BS; Carvalho LA; Rassa M; Miquita DR; de Oliveira FA; Cançado LG; Agero U; Plentz F; Cury LA; Gonzalez JC; Moreira RL; Paniago R; Magalhães-Paniago R; Neves BR
    J Nanosci Nanotechnol; 2007 Sep; 7(9):3071-80. PubMed ID: 18019131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth and optical properties of sallow-like hierarchical SnO2 nanostructures.
    Xu F; Yu K; Shi M; Bai W; Zhang Q; Wang Q; Li Q; Zhu Z
    J Nanosci Nanotechnol; 2007 Aug; 7(8):2899-903. PubMed ID: 17685314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and field emission characterization of titanium nitride nanowires.
    Hu Y; Huo K; Ma Y; Lü Y; Xu J; Hu Z; Chen Y
    J Nanosci Nanotechnol; 2007 Aug; 7(8):2922-6. PubMed ID: 17685319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires.
    Gao J; Chen R; Li DH; Jiang L; Ye JC; Ma XC; Chen XD; Xiong QH; Sun HD; Wu T
    Nanotechnology; 2011 May; 22(19):195706. PubMed ID: 21430316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled fabrication of SnO(2) arrays of well-aligned nanotubes and nanowires.
    Shi L; Xu Y; Li Q
    Nanoscale; 2010 Oct; 2(10):2104-8. PubMed ID: 20689879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of long indium nitride nanowires with uniform diameters in large quantities.
    Luo S; Zhou W; Zhang Z; Liu L; Dou X; Wang J; Zhao X; Liu D; Gao Y; Song L; Xiang Y; Zhou J; Xie S
    Small; 2005 Oct; 1(10):1004-9. PubMed ID: 17193386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and synchrotron light-induced luminescence of ZnO nanostructures: nanowires, nanoneedles, nanoflowers, and tubular whiskers.
    Sun XH; Lam S; Sham TK; Heigl F; Jürgensen A; Wong NB
    J Phys Chem B; 2005 Mar; 109(8):3120-5. PubMed ID: 16851331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal-structure-dependent photoluminescence from InP nanowires.
    Mattila M; Hakkarainen T; Mulot M; Lipsanen H
    Nanotechnology; 2006 Mar; 17(6):1580-3. PubMed ID: 26558562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth, structure, and luminescence properties of novel silica nanowires and interconnected nanorings.
    Min X; Fang M; Liu H; Liu Y; Wu X; Huang Z
    Sci Rep; 2017 Sep; 7(1):10482. PubMed ID: 28874878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum-dot-induced self-assembly of cricoid protein for light harvesting.
    Miao L; Han J; Zhang H; Zhao L; Si C; Zhang X; Hou C; Luo Q; Xu J; Liu J
    ACS Nano; 2014 Apr; 8(4):3743-51. PubMed ID: 24601558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphology controlling method for amorphous silica nanoparticles and jellyfish-like nanowires and their luminescence properties.
    Liu H; Huang Z; Huang J; Xu S; Fang M; Liu YG; Wu X; Zhang S
    Sci Rep; 2016 Mar; 6():22459. PubMed ID: 26940294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bicrystalline hematite nanowires.
    Wang R; Chen Y; Fu Y; Zhang H; Kisielowski C
    J Phys Chem B; 2005 Jun; 109(25):12245-9. PubMed ID: 16852510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.