These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 26373158)
1. Photocatalytic Decomposition of Methylene Blue Over MIL-53(Fe) Prepared Using Microwave-Assisted Process Under Visible Light Irradiation. Trinh ND; Hong SS J Nanosci Nanotechnol; 2015 Jul; 15(7):5450-4. PubMed ID: 26373158 [TBL] [Abstract][Full Text] [Related]
2. New photocatalysts based on MIL-53 metal-organic frameworks for the decolorization of methylene blue dye. Du JJ; Yuan YP; Sun JX; Peng FM; Jiang X; Qiu LG; Xie AJ; Shen YH; Zhu JF J Hazard Mater; 2011 Jun; 190(1-3):945-51. PubMed ID: 21531507 [TBL] [Abstract][Full Text] [Related]
3. Photocatalytic activity of Fe-doped CaTiO₃ under UV-visible light. Yang H; Han C; Xue X J Environ Sci (China); 2014 Jul; 26(7):1489-95. PubMed ID: 25079998 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of PbMoO4 nanoparticles by microwave-assisted hydrothermal process and their photocatalytic activity. Song YI; Lim KT; Lee GD; Lee MS; Hong SS J Nanosci Nanotechnol; 2014 Nov; 14(11):8502-6. PubMed ID: 25958553 [TBL] [Abstract][Full Text] [Related]
5. Ultrasound-assisted synthesis and visible-light-driven photocatalytic activity of Fe-incorporated TiO2 nanotube array photocatalysts. Wu Q; Ouyang J; Xie K; Sun L; Wang M; Lin C J Hazard Mater; 2012 Jan; 199-200():410-7. PubMed ID: 22118853 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of BiVO₄ Nanoparticles Using Microwave Process and Their Photocatalytic Activity Under Visible Light Irradiation. Trinh Nguyen D; Hong SS J Nanosci Nanotechnol; 2017 Apr; 17(4):2690-694. PubMed ID: 29664582 [TBL] [Abstract][Full Text] [Related]
7. Modified MIL-100(Fe) for enhanced photocatalytic degradation of tetracycline under visible-light irradiation. He Y; Dong W; Li X; Wang D; Yang Q; Deng P; Huang J J Colloid Interface Sci; 2020 Aug; 574():364-376. PubMed ID: 32339819 [TBL] [Abstract][Full Text] [Related]
8. Preparation, characterization and activity evaluation of p-n junction photocatalyst p-CaFe2O4/n-Ag3VO4 under visible light irradiation. Shifu C; Wei Z; Wei L; Huaye Z; Xiaoling Y; Yinghao C J Hazard Mater; 2009 Dec; 172(2-3):1415-23. PubMed ID: 19709814 [TBL] [Abstract][Full Text] [Related]
9. A green synthesized recyclable ZnO/MIL-101(Fe) for Rhodamine B dye removal via adsorption and photo-degradation under UV and visible light irradiation. Amdeha E; Mohamed RS Environ Technol; 2021 Feb; 42(6):842-859. PubMed ID: 31327310 [TBL] [Abstract][Full Text] [Related]
10. Iron metal-organic frameworks MIL-88B and NH2-MIL-88B for the loading and delivery of the gasotransmitter carbon monoxide. Ma M; Noei H; Mienert B; Niesel J; Bill E; Muhler M; Fischer RA; Wang Y; Schatzschneider U; Metzler-Nolte N Chemistry; 2013 May; 19(21):6785-90. PubMed ID: 23536364 [TBL] [Abstract][Full Text] [Related]
11. In-situ microwave synthesis of graphene-TiO2 nanocomposites with enhanced photocatalytic properties for the degradation of organic pollutants. Shanmugam M; Alsalme A; Alghamdi A; Jayavel R J Photochem Photobiol B; 2016 Oct; 163():216-23. PubMed ID: 27588719 [TBL] [Abstract][Full Text] [Related]
12. Simple and template-free method for preparation of (ZnO)1-x[Cd(OH)2]x nanoparticles in water and their photocatalytic activities. Barjasteh-Moghaddam M; Habibi-Yangjeh A Environ Technol; 2011 Dec; 33(15-16):1735-41. PubMed ID: 22439559 [TBL] [Abstract][Full Text] [Related]
13. Preparation of a hybrids APT@MIL by one-step solvent-thermal method for effectively degrading organics. Zhang Y; Gao D; He Y; Li B; Song P; Wang R Water Sci Technol; 2021 Mar; 83(5):1118-1129. PubMed ID: 33724941 [TBL] [Abstract][Full Text] [Related]
14. Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts. Saravanan R; Joicy S; Gupta VK; Narayanan V; Stephen A Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4725-31. PubMed ID: 24094180 [TBL] [Abstract][Full Text] [Related]
15. Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles. Soltani N; Saion E; Hussein MZ; Erfani M; Abedini A; Bahmanrokh G; Navasery M; Vaziri P Int J Mol Sci; 2012 Sep; 13(10):12242-58. PubMed ID: 23202896 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of mesoporous TiO2-curcumin nanoparticles for photocatalytic degradation of methylene blue dye. Abou-Gamra ZM; Ahmed MA J Photochem Photobiol B; 2016 Jul; 160():134-41. PubMed ID: 27107333 [TBL] [Abstract][Full Text] [Related]
17. Visible light-induced photocatalytic activity of Bi2O3 prepared via microwave-assisted method. Liu X; Pan L; Li J; Yu K; Sun Z J Nanosci Nanotechnol; 2013 Jul; 13(7):5044-7. PubMed ID: 23901528 [TBL] [Abstract][Full Text] [Related]
18. Photocatalytic degradation of methylene blue with Fe doped ZnS nanoparticles. Chauhan R; Kumar A; Chaudhary RP Spectrochim Acta A Mol Biomol Spectrosc; 2013 Sep; 113():250-6. PubMed ID: 23732620 [TBL] [Abstract][Full Text] [Related]
19. Visible light photo-degradation of methylene blue over Fe or Cu promoted ZnO nanoparticles. Mardani HR; Forouzani M; Ziari M; Biparva P Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 141():27-33. PubMed ID: 25659739 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of PbMoO₄ Nanoparticles Using a Facile Surfactant-Assisted Microwave Process and Their Photocatalytic Activity. Jung WY; Lee GD; Lim KT; Lee MS; Hong SS J Nanosci Nanotechnol; 2017 Apr; 17(4):2751-755. PubMed ID: 29664597 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]