These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 26373310)
1. Fe-, Co-, and Ni-Loaded Porous Activated Carbon Balls as Lightweight Microwave Absorbents. Li G; Wang L; Li W; Xu Y Chemphyschem; 2015 Nov; 16(16):3458-67. PubMed ID: 26373310 [TBL] [Abstract][Full Text] [Related]
2. CoFe2O4 and/or Co3Fe7 loaded porous activated carbon balls as a lightweight microwave absorbent. Li G; Wang L; Li W; Ding R; Xu Y Phys Chem Chem Phys; 2014 Jun; 16(24):12385-92. PubMed ID: 24829135 [TBL] [Abstract][Full Text] [Related]
3. Removal of trace Cr(VI) from aqueous solution by porous activated carbon balls supported by nanoscale zero-valent iron composites. Song Y; Wang L; Lv B; Chang G; Jiao W; Liu Y Environ Sci Pollut Res Int; 2020 Mar; 27(7):7015-7024. PubMed ID: 31900773 [TBL] [Abstract][Full Text] [Related]
4. Excellent Electromagnetic Absorption Capability of Ni/Carbon Based Conductive and Magnetic Foams Synthesized via a Green One Pot Route. Zhao HB; Fu ZB; Chen HB; Zhong ML; Wang CY ACS Appl Mater Interfaces; 2016 Jan; 8(2):1468-77. PubMed ID: 26710881 [TBL] [Abstract][Full Text] [Related]
5. Bio-inspired fabrication of hierarchical Ni-Fe-P coated skin collagen fibers for high-performance microwave absorption. Wang X; Liao X; Zhang W; Shi B Phys Chem Chem Phys; 2015 Jan; 17(3):2113-20. PubMed ID: 25484199 [TBL] [Abstract][Full Text] [Related]
6. Enhanced microwave absorbing performance of CoNi alloy nanoparticles anchored on a spherical carbon monolith. Li N; Hu C; Cao M Phys Chem Chem Phys; 2013 May; 15(20):7685-9. PubMed ID: 23595353 [TBL] [Abstract][Full Text] [Related]
7. A facile self-template strategy for synthesizing 1D porous Ni@C nanorods towards efficient microwave absorption. Zhang Y; Zhang X; Quan B; Ji G; Liang X; Liu W; Du Y Nanotechnology; 2017 Mar; 28(11):115704. PubMed ID: 28205507 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of bimetallic metal-organic frameworks derived cobalt iron alloy@carbon-carbon nanotubes composites as ultrathin and high-efficiency microwave absorbers. Shu R; Wu Y; Li X; Li N; Shi J J Colloid Interface Sci; 2022 May; 613():477-487. PubMed ID: 35051722 [TBL] [Abstract][Full Text] [Related]
9. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Qiu X; Wang L; Zhu H; Guan Y; Zhang Q Nanoscale; 2017 Jun; 9(22):7408-7418. PubMed ID: 28540377 [TBL] [Abstract][Full Text] [Related]
10. Thermal conversion of an Fe₃O₄@metal-organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material. Zhang X; Ji G; Liu W; Quan B; Liang X; Shang C; Cheng Y; Du Y Nanoscale; 2015 Aug; 7(30):12932-42. PubMed ID: 26167763 [TBL] [Abstract][Full Text] [Related]
11. Hierarchical porous Ni@boehmite/nickel aluminum oxide flakes with enhanced microwave absorption ability. Zhao B; Liu J; Guo X; Zhao W; Liang L; Ma C; Zhang R Phys Chem Chem Phys; 2017 Mar; 19(13):9128-9136. PubMed ID: 28317985 [TBL] [Abstract][Full Text] [Related]
12. Facile synthesis of nickel/carbon nanotubes hybrid derived from metal organic framework as a lightweight, strong and efficient microwave absorber. Qiu Y; Yang H; Wen B; Ma L; Lin Y J Colloid Interface Sci; 2021 May; 590():561-570. PubMed ID: 33581659 [TBL] [Abstract][Full Text] [Related]
13. Preparation of Ni/C porous fibers derived from jute fibers for high-performance microwave absorption. Li W; Guo F; Wei X; Du Y; Chen Y RSC Adv; 2020 Oct; 10(60):36644-36653. PubMed ID: 35517929 [TBL] [Abstract][Full Text] [Related]
14. Binary Nickel-Cobalt Oxides Electrode Materials for High-Performance Supercapacitors: Influence of its Composition and Porous Nature. Zhang J; Liu F; Cheng JP; Zhang XB ACS Appl Mater Interfaces; 2015 Aug; 7(32):17630-40. PubMed ID: 26204426 [TBL] [Abstract][Full Text] [Related]
15. Highly Cuboid-Shaped Heterobimetallic Metal-Organic Frameworks Derived from Porous Co/ZnO/C Microrods with Improved Electromagnetic Wave Absorption Capabilities. Liao Q; He M; Zhou Y; Nie S; Wang Y; Hu S; Yang H; Li H; Tong Y ACS Appl Mater Interfaces; 2018 Aug; 10(34):29136-29144. PubMed ID: 30070478 [TBL] [Abstract][Full Text] [Related]
16. The enhanced microwave absorption property of CoFe(2)O(4) nanoparticles coated with a Co(3)Fe(7)-Co nanoshell by thermal reduction. Xi L; Wang Z; Zuo Y; Shi X Nanotechnology; 2011 Jan; 22(4):045707. PubMed ID: 21169659 [TBL] [Abstract][Full Text] [Related]
17. Magnetic γ-Fe2O3, Fe3O4, and Fe nanoparticles confined within ordered mesoporous carbons as efficient microwave absorbers. Wang J; Zhou H; Zhuang J; Liu Q Phys Chem Chem Phys; 2015 Feb; 17(5):3802-12. PubMed ID: 25562071 [TBL] [Abstract][Full Text] [Related]
18. Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybrids. Zhao B; Zhao W; Shao G; Fan B; Zhang R Dalton Trans; 2015 Sep; 44(36):15984-93. PubMed ID: 26282622 [TBL] [Abstract][Full Text] [Related]
19. Cobalt nanoparticles embedded nitrogen-doped porous graphitized carbon composites with enhanced microwave absorption performance. Quan B; Xu G; Gu W; Sheng J; Ji G J Colloid Interface Sci; 2019 Jan; 533():297-303. PubMed ID: 30172143 [TBL] [Abstract][Full Text] [Related]
20. Efficient and Lightweight Electromagnetic Wave Absorber Derived from Metal Organic Framework-Encapsulated Cobalt Nanoparticles. Wang H; Xiang L; Wei W; An J; He J; Gong C; Hou Y ACS Appl Mater Interfaces; 2017 Dec; 9(48):42102-42110. PubMed ID: 29131569 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]