These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 26373429)

  • 21. Ligand binding to 2΄-deoxyguanosine sensing riboswitch in metabolic context.
    Kim YB; Wacker A; Laer KV; Rogov VV; Suess B; Schwalbe H
    Nucleic Acids Res; 2017 May; 45(9):5375-5386. PubMed ID: 28115631
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular recognition in the FMN-RNA aptamer complex.
    Fan P; Suri AK; Fiala R; Live D; Patel DJ
    J Mol Biol; 1996 May; 258(3):480-500. PubMed ID: 8642604
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Common Secondary and Tertiary Structural Features of Aptamer-Ligand Interaction Shared by RNA Aptamers with Different Primary Sequences.
    Ilgu M; Yan S; Khounlo RM; Lamm MH; Nilsen-Hamilton M
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31835789
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quinine binding by the cocaine-binding aptamer. Thermodynamic and hydrodynamic analysis of high-affinity binding of an off-target ligand.
    Reinstein O; Yoo M; Han C; Palmo T; Beckham SA; Wilce MC; Johnson PE
    Biochemistry; 2013 Dec; 52(48):8652-62. PubMed ID: 24175947
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solution structure of a DNA mimicking motif of an RNA aptamer against transcription factor AML1 Runt domain.
    Nomura Y; Tanaka Y; Fukunaga J; Fujiwara K; Chiba M; Iibuchi H; Tanaka T; Nakamura Y; Kawai G; Kozu T; Sakamoto T
    J Biochem; 2013 Dec; 154(6):513-9. PubMed ID: 23997091
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigating the malleability of RNA aptamers.
    Ilgu M; Wang T; Lamm MH; Nilsen-Hamilton M
    Methods; 2013 Sep; 63(2):178-87. PubMed ID: 23535583
    [TBL] [Abstract][Full Text] [Related]  

  • 27. E88, a new cyclic-di-GMP class I riboswitch aptamer from Clostridium tetani, has a similar fold to the prototypical class I riboswitch, Vc2, but differentially binds to c-di-GMP analogs.
    Luo Y; Chen B; Zhou J; Sintim HO; Dayie TK
    Mol Biosyst; 2014 Mar; 10(3):384-90. PubMed ID: 24430255
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ligand specificity and affinity in the sulforhodamine B binding RNA aptamer.
    Piccolo KA; McNeil B; Crouse J; Lim SJ; Bickers SC; Hopkins WS; Dieckmann T
    Biochem Biophys Res Commun; 2020 Aug; 529(3):666-671. PubMed ID: 32736690
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The intrinsic flexibility of the aptamer targeting the ribosomal protein S8 is a key factor for the molecular recognition.
    Autiero I; Ruvo M; Improta R; Vitagliano L
    Biochim Biophys Acta Gen Subj; 2018 Apr; 1862(4):1006-1016. PubMed ID: 29413905
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of the free and ligand-bound imino hydrogen exchange rates for the cocaine-binding aptamer.
    Churcher ZR; Neves MAD; Hunter HN; Johnson PE
    J Biomol NMR; 2017 May; 68(1):33-39. PubMed ID: 28477231
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RNA complex purification using high-affinity fluorescent RNA aptamer tags.
    Panchapakesan SS; Jeng SC; Unrau PJ
    Ann N Y Acad Sci; 2015 Apr; 1341():149-55. PubMed ID: 25585661
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural analysis of ribonucleopeptide aptamer against ATP.
    Mashima T; Matsugami A; Nakano S; Inoue M; Fukuda M; Morii T; Katahira M
    Nucleic Acids Symp Ser (Oxf); 2009; (53):267-8. PubMed ID: 19749363
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Entropy and Mg2+ control ligand affinity and specificity in the malachite green binding RNA aptamer.
    Bernard Da Costa J; Dieckmann T
    Mol Biosyst; 2011 Jul; 7(7):2156-63. PubMed ID: 21523267
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NMR chemical exchange as a probe for ligand-binding kinetics in a theophylline-binding RNA aptamer.
    Latham MP; Zimmermann GR; Pardi A
    J Am Chem Soc; 2009 Apr; 131(14):5052-3. PubMed ID: 19317486
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A ribonucleopeptide module for effective conversion of an RNA aptamer to a fluorescent sensor.
    Liew FF; Hayashi H; Nakano S; Nakata E; Morii T
    Bioorg Med Chem; 2011 Oct; 19(19):5771-5. PubMed ID: 21906952
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of RNA aptamers against SRP19 protein having sequences different from SRP RNA.
    Haraguchi Y; Kuwasako K; Muto Y; Bessho Y; Nishimoto M; Yokoyama S; Kanai A; Kawai G; Sakamoto T
    Nucleic Acids Symp Ser (Oxf); 2009; (53):265-6. PubMed ID: 19749362
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure of RNA aptamer for HIV Tat complexed with Tat-derived peptide.
    Matsugami A; Tamura Y; Kudo M; Uesugi S; Yamamoto R; Kumar P; Katahira M
    Nucleic Acids Symp Ser (Oxf); 2004; (48):111-2. PubMed ID: 17150503
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A naturally occurring, noncanonical GTP aptamer made of simple tandem repeats.
    Curtis EA; Liu DR
    RNA Biol; 2014; 11(6):682-92. PubMed ID: 24824832
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNA mimicry by a high-affinity anti-NF-kappaB RNA aptamer.
    Reiter NJ; Maher LJ; Butcher SE
    Nucleic Acids Res; 2008 Mar; 36(4):1227-36. PubMed ID: 18160411
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aptamers with fluorescence-signaling properties.
    Nutiu R; Li Y
    Methods; 2005 Sep; 37(1):16-25. PubMed ID: 16199173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.