These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 26373694)
1. Structural, Biochemical, and Computational Studies Reveal the Mechanism of Selective Aldehyde Dehydrogenase 1A1 Inhibition by Cytotoxic Duocarmycin Analogues. Koch MF; Harteis S; Blank ID; Pestel G; Tietze LF; Ochsenfeld C; Schneider S; Sieber SA Angew Chem Int Ed Engl; 2015 Nov; 54(46):13550-4. PubMed ID: 26373694 [TBL] [Abstract][Full Text] [Related]
2. 3D-QSAR and scaffold hopping based designing of benzo[d]ox-azol-2(3H)-one and 2-oxazolo[4,5-b]pyridin-2(3H)-one derivatives as selective aldehyde dehydrogenase 1A1 inhibitors: Synthesis and biological evaluation. Verma H; Narendra G; Raju B; Kumar M; Jain SK; Tung GK; Singh PK; Silakari O Arch Pharm (Weinheim); 2022 Sep; 355(9):e2200108. PubMed ID: 35618489 [TBL] [Abstract][Full Text] [Related]
3. Characterization of two distinct structural classes of selective aldehyde dehydrogenase 1A1 inhibitors. Morgan CA; Hurley TD J Med Chem; 2015 Feb; 58(4):1964-75. PubMed ID: 25634381 [TBL] [Abstract][Full Text] [Related]
4. Establishing the parabolic relationship between reactivity and activity for derivatives and analogues of the duocarmycin and CC-1065 alkylation subunits. Parrish JP; Hughes TV; Hwang I; Boger DL J Am Chem Soc; 2004 Jan; 126(1):80-1. PubMed ID: 14709069 [TBL] [Abstract][Full Text] [Related]
5. Solution structure of the covalent duocarmycin A-DNA duplex complex. Lin CH; Patel DJ J Mol Biol; 1995 Apr; 248(1):162-79. PubMed ID: 7731041 [TBL] [Abstract][Full Text] [Related]
6. Solid-Phase Synthesis of Duocarmycin Analogues and the Effect of C-Terminal Substitution on Biological Activity. Stephenson MJ; Howell LA; O'Connell MA; Fox KR; Adcock C; Kingston J; Sheldrake H; Pors K; Collingwood SP; Searcey M J Org Chem; 2015 Oct; 80(19):9454-67. PubMed ID: 26356089 [TBL] [Abstract][Full Text] [Related]
7. Site specific covalent alkylation of DNA by antitumor antibiotics, duocarmycin A and kapurimycin A3. Sugiyama H; Lam CK; Hosoda M; Saito I Nucleic Acids Symp Ser; 1991; (25):75-6. PubMed ID: 1842103 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and antitumor activity of duocarmycin derivatives: A-ring pyrrole compounds bearing cinnamoyl groups. Nagamura S; Asai A; Amishiro N; Kobayashi E; Gomi K; Saito H J Med Chem; 1997 Mar; 40(6):972-9. PubMed ID: 9083487 [TBL] [Abstract][Full Text] [Related]
9. Efficient guanine alkylation through cooperative heterodimeric formation of duocarmycin A and distamycin A. Isomura M; Sugiyama H; Saito I Nucleic Acids Symp Ser; 1995; (34):47-8. PubMed ID: 8841545 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and evaluation of 1,2,8, 8a-Tetrahydrocyclopropa[c]pyrrolo[3,2-e]indol-4(5H)-one, the parent alkylation subunit of CC-1065 and the duocarmycins: impact of the alkylation subunit substituents and its implications for DNA alkylation catalysis. Boger DL; Santillán A; Searcey M; Brunette SR; Wolkenberg SE; Hedrick MP; Jin Q J Org Chem; 2000 Jun; 65(13):4101-11. PubMed ID: 10866627 [TBL] [Abstract][Full Text] [Related]
11. Development of selective inhibitors for aldehyde dehydrogenases based on substituted indole-2,3-diones. Kimble-Hill AC; Parajuli B; Chen CH; Mochly-Rosen D; Hurley TD J Med Chem; 2014 Feb; 57(3):714-22. PubMed ID: 24444054 [TBL] [Abstract][Full Text] [Related]
12. Development of a high-throughput in vitro assay to identify selective inhibitors for human ALDH1A1. Morgan CA; Hurley TD Chem Biol Interact; 2015 Jun; 234():29-37. PubMed ID: 25450233 [TBL] [Abstract][Full Text] [Related]
13. The use of molecular dynamics simulations to evaluate the DNA sequence-selectivity of G-A cross-linking PBD-duocarmycin dimers. Jackson PJM; Rahman KM; Thurston DE Bioorg Med Chem Lett; 2017 Jan; 27(1):102-108. PubMed ID: 27889454 [TBL] [Abstract][Full Text] [Related]
14. Discovery of NCT-501, a Potent and Selective Theophylline-Based Inhibitor of Aldehyde Dehydrogenase 1A1 (ALDH1A1). Yang SM; Yasgar A; Miller B; Lal-Nag M; Brimacombe K; Hu X; Sun H; Wang A; Xu X; Nguyen K; Oppermann U; Ferrer M; Vasiliou V; Simeonov A; Jadhav A; Maloney DJ J Med Chem; 2015 Aug; 58(15):5967-78. PubMed ID: 26207746 [TBL] [Abstract][Full Text] [Related]
15. Structural influence of indole C5-N-substitutents on the cytotoxicity of seco-duocarmycin analogs. Choi T; Ma E Arch Pharm Res; 2011 Mar; 34(3):357-67. PubMed ID: 21547666 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and antitumor activity of duocarmycin derivatives: modification of segment A of duocarmycin B2. Nagamura S; Asai A; Kanda Y; Kobayashi E; Gomi K; Saito H Chem Pharm Bull (Tokyo); 1996 Sep; 44(9):1723-30. PubMed ID: 8855367 [TBL] [Abstract][Full Text] [Related]
17. Chemical and biological explorations of the family of CC-1065 and the duocarmycin natural products. Ghosh N; Sheldrake HM; Searcey M; Pors K Curr Top Med Chem; 2009; 9(16):1494-524. PubMed ID: 19903166 [TBL] [Abstract][Full Text] [Related]
18. Interconversion and stability of duocarmycins, a new family of antitumor antibiotics: correlation to their cytotoxic and antimicrobial activities in vitro. Ichimura M; Ogawa T; Takahashi K; Mihara A; Takahashi I; Nakano H Oncol Res; 1993; 5(4-5):165-71. PubMed ID: 8305742 [TBL] [Abstract][Full Text] [Related]
19. Sequence-selective guanine reactivity by duocarmycin A. Mitchell MA; Weiland KL; Aristoff PA; Johnson PD; Dooley TP Chem Res Toxicol; 1993; 6(4):421-4. PubMed ID: 8374036 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and antitumor activity of duocarmycin derivatives: A-ring pyrrole analogues of duocarmycin B2. Nagamura S; Kobayashi E; Gomi K; Saito H Bioorg Med Chem; 1996 Aug; 4(8):1379-91. PubMed ID: 8879561 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]