These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
526 related articles for article (PubMed ID: 26373721)
81. A 1-year study of endurance runners: training, laboratory tests, and field tests. Galbraith A; Hopker J; Cardinale M; Cunniffe B; Passfield L Int J Sports Physiol Perform; 2014 Nov; 9(6):1019-25. PubMed ID: 24664950 [TBL] [Abstract][Full Text] [Related]
82. Integration of the physiological factors determining endurance performance ability. Coyle EF Exerc Sport Sci Rev; 1995; 23():25-63. PubMed ID: 7556353 [TBL] [Abstract][Full Text] [Related]
83. Blood lactate changes during isocapnic buffering in sprinters and long distance runners. Hirakoba K; Yunoki T J Physiol Anthropol Appl Human Sci; 2002 May; 21(3):143-9. PubMed ID: 12148456 [TBL] [Abstract][Full Text] [Related]
84. Quantifying training intensity distribution in elite endurance athletes: is there evidence for an "optimal" distribution? Seiler KS; Kjerland GØ Scand J Med Sci Sports; 2006 Feb; 16(1):49-56. PubMed ID: 16430681 [TBL] [Abstract][Full Text] [Related]
85. Endurance training and testing with the ball in young elite soccer players. Chamari K; Hachana Y; Kaouech F; Jeddi R; Moussa-Chamari I; Wisløff U Br J Sports Med; 2005 Jan; 39(1):24-8. PubMed ID: 15618335 [TBL] [Abstract][Full Text] [Related]
86. Effects of high-intensity interval training on the VO2 response during severe exercise. Duffield R; Edge J; Bishop D J Sci Med Sport; 2006 Jun; 9(3):249-55. PubMed ID: 16690353 [TBL] [Abstract][Full Text] [Related]
87. The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Tomlin DL; Wenger HA Sports Med; 2001; 31(1):1-11. PubMed ID: 11219498 [TBL] [Abstract][Full Text] [Related]
88. .VO2 is attenuated above the lactate threshold in endurance-trained runners. Bickham DC; Gibbons C; Le Rossignol PF Med Sci Sports Exerc; 2004 Feb; 36(2):297-301. PubMed ID: 14767254 [TBL] [Abstract][Full Text] [Related]
89. The performance and aerobic endurance effects of high-intensity versus moderate-intensity continuous running. Jarstad E; Mamen A Appl Physiol Nutr Metab; 2019 Sep; 44(9):990-996. PubMed ID: 30726107 [TBL] [Abstract][Full Text] [Related]
90. Influence of continuous and interval training on oxygen uptake on-kinetics. Berger NJ; Tolfrey K; Williams AG; Jones AM Med Sci Sports Exerc; 2006 Mar; 38(3):504-12. PubMed ID: 16540838 [TBL] [Abstract][Full Text] [Related]
91. Determination of critical power by pulmonary gas exchange. Hill DW; Smith JC Can J Appl Physiol; 1999 Feb; 24(1):74-86. PubMed ID: 9916183 [TBL] [Abstract][Full Text] [Related]
92. The positive effects of priming exercise on oxygen uptake kinetics and high-intensity exercise performance are not magnified by a fast-start pacing strategy in trained cyclists. Caritá RA; Greco CC; Denadai BS PLoS One; 2014; 9(4):e95202. PubMed ID: 24740278 [TBL] [Abstract][Full Text] [Related]
93. Effect of high-intensity submaximal work, with or without rest, on subsequent VO2max. Judelson DA; Rundell KW; Beck KC; King TM; Laclair KL Med Sci Sports Exerc; 2004 Feb; 36(2):292-6. PubMed ID: 14767253 [TBL] [Abstract][Full Text] [Related]
94. Elucidating determinants of the plateau in oxygen consumption at VO2max. Astorino TA; Willey J; Kinnahan J; Larsson SM; Welch H; Dalleck LC Br J Sports Med; 2005 Sep; 39(9):655-60; discussion 660. PubMed ID: 16118305 [TBL] [Abstract][Full Text] [Related]
95. Magnitude and time course of changes in maximal oxygen uptake in response to distinct regimens of chronic interval training in sedentary women. Astorino TA; Schubert MM; Palumbo E; Stirling D; McMillan DW; Cooper C; Godinez J; Martinez D; Gallant R Eur J Appl Physiol; 2013 Sep; 113(9):2361-9. PubMed ID: 23754097 [TBL] [Abstract][Full Text] [Related]
96. Overnight fasting compromises exercise intensity and volume during sprint interval training but improves high-intensity aerobic endurance. Terada T; Toghi Eshghi SR; Liubaoerjijin Y; Kennedy M; Myette-Côté É; Fletcher K; Boulé NG J Sports Med Phys Fitness; 2019 Mar; 59(3):357-365. PubMed ID: 29619796 [TBL] [Abstract][Full Text] [Related]
97. Maximal endurance time at VO2max. Morton RH; Billat V Med Sci Sports Exerc; 2000 Aug; 32(8):1496-504. PubMed ID: 10949018 [TBL] [Abstract][Full Text] [Related]
98. Comparison of incremental and steady state tests of endurance training. Denis C; Dormois D; Castells J; Bonnefoy R; Padilla S; Geyssant A; Lacour JR Eur J Appl Physiol Occup Physiol; 1988; 57(4):474-81. PubMed ID: 3396562 [TBL] [Abstract][Full Text] [Related]
99. Long maximal incremental tests accurately assess aerobic fitness in class II and III obese men. Lanzi S; Codecasa F; Cornacchia M; Maestrini S; Capodaglio P; Brunani A; Fanari P; Salvadori A; Malatesta D PLoS One; 2015; 10(4):e0124180. PubMed ID: 25875746 [TBL] [Abstract][Full Text] [Related]
100. Influence of exercise intensity on time spent at high percentage of maximal oxygen uptake during an intermittent session in young endurance-trained athletes. Thevenet D; Tardieu M; Zouhal H; Jacob C; Abderrahman BA; Prioux J Eur J Appl Physiol; 2007 Dec; 102(1):19-26. PubMed ID: 17851682 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]