BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 26373787)

  • 1. Near-Infrared Plasmonic-Enhanced Solar Energy Harvest for Highly Efficient Photocatalytic Reactions.
    Cui J; Li Y; Liu L; Chen L; Xu J; Ma J; Fang G; Zhu E; Wu H; Zhao L; Wang L; Huang Y
    Nano Lett; 2015 Oct; 15(10):6295-301. PubMed ID: 26373787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic harvesting of light energy for Suzuki coupling reactions.
    Wang F; Li C; Chen H; Jiang R; Sun LD; Li Q; Wang J; Yu JC; Yan CH
    J Am Chem Soc; 2013 Apr; 135(15):5588-601. PubMed ID: 23521598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visible to near-infrared plasmon-enhanced catalytic activity of Pd hexagonal nanoplates for the Suzuki coupling reaction.
    Trinh TT; Sato R; Sakamoto M; Fujiyoshi Y; Haruta M; Kurata H; Teranishi T
    Nanoscale; 2015 Aug; 7(29):12435-44. PubMed ID: 26133744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic Nanoparticle Film for Low-Power NIR-Enhanced Photocatalytic Reaction.
    Liang W; Sun Y; Liang Z; Li D; Wang Y; Qin W; Jiang L
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16753-16761. PubMed ID: 32119778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-plasmonic Au@Cu
    Tsao CW; Narra S; Kao JC; Lin YC; Chen CY; Chin YC; Huang ZJ; Huang WH; Huang CC; Luo CW; Chou JP; Ogata S; Sone M; Huang MH; Chang TM; Lo YC; Lin YG; Diau EW; Hsu YJ
    Nat Commun; 2024 Jan; 15(1):413. PubMed ID: 38195553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of Scattering and Near Field of TiO
    Liu M; Jin X; Li S; Billeau JB; Peng T; Li H; Zhao L; Zhang Z; Claverie JP; Razzari L; Zhang J
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34714-34723. PubMed ID: 34269047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photothermal-enhanced catalysis in core-shell plasmonic hierarchical Cu
    Wang F; Huang Y; Chai Z; Zeng M; Li Q; Wang Y; Xu D
    Chem Sci; 2016 Dec; 7(12):6887-6893. PubMed ID: 28567259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Au/La
    Zhu M; Cai X; Fujitsuka M; Zhang J; Majima T
    Angew Chem Int Ed Engl; 2017 Feb; 56(8):2064-2068. PubMed ID: 28079971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective Charge Carrier Utilization in Photocatalytic Conversions.
    Zhang P; Wang T; Chang X; Gong J
    Acc Chem Res; 2016 May; 49(5):911-21. PubMed ID: 27075166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled gold-palladium cores in ceria hollow spheres as nanoreactor for plasmon-enhanced catalysis under visible light irradiation.
    Zhao X; Wang S; Yang K; Yang X; Liu X
    J Colloid Interface Sci; 2023 Mar; 633():11-23. PubMed ID: 36427425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upconversion Material-Plasmonic Metal-Semiconductor Ternary Heteronanostructures for Wide-Range Solar-to-Chemical Energy Conversion.
    Jung H; Cho Y; Kang S; Nho HW; Kim Y; Kwon OH; Han SW
    ACS Appl Mater Interfaces; 2024 Jan; 16(2):2341-2350. PubMed ID: 38178695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of 2D/1D Cu
    Lv H; Zhang F; Wang L; Shen Q; Li G; Zhan M; Wang G; Wang G; Liu Y
    J Colloid Interface Sci; 2024 Jan; 653(Pt B):1304-1316. PubMed ID: 37801842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis.
    Wy Y; Jung H; Hong JW; Han SW
    Acc Chem Res; 2022 Mar; 55(6):831-843. PubMed ID: 35213153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progressive Design of Plasmonic Metal-Semiconductor Ensemble toward Regulated Charge Flow and Improved Vis-NIR-Driven Solar-to-Chemical Conversion.
    Han C; Quan Q; Chen HM; Sun Y; Xu YJ
    Small; 2017 Apr; 13(14):. PubMed ID: 28151576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic quaternary heteronanostructures (HNSs) for improved solar light utilization, spatial charge separation, and stability in photocatalytic hydrogen production.
    Mandari KK; Son N; Kim YS; Kang M
    J Colloid Interface Sci; 2021 Jan; 582(Pt B):720-731. PubMed ID: 32911417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling Plasmonic and Cocatalyst Nanoparticles on N⁻TiO₂ for Visible-Light-Driven Catalytic Organic Synthesis.
    Wang Y; Chen Y; Hou Q; Ju M; Li W
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30866493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hollow cubic CuSe@CdS with tunable size for plasmon-induced Vis-NIR driven photocatalytic properties.
    Li N; Li L; Qiu Y; Liu X; Zhang J; Gao Y; Ge L
    Nanoscale; 2024 Apr; 16(16):8151-8161. PubMed ID: 38572680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Nonmetal Plasmonic Z-Scheme Photocatalyst with UV- to NIR-Driven Photocatalytic Protons Reduction.
    Zhang Z; Huang J; Fang Y; Zhang M; Liu K; Dong B
    Adv Mater; 2017 May; 29(18):. PubMed ID: 28262995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Balancing Near-Field Enhancement, Absorption, and Scattering for Effective Antenna-Reactor Plasmonic Photocatalysis.
    Li K; Hogan NJ; Kale MJ; Halas NJ; Nordlander P; Christopher P
    Nano Lett; 2017 Jun; 17(6):3710-3717. PubMed ID: 28481115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.